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Background: Three-dimensional tsunami simulations

Conventional Free surface modelings
I Volume of fluid (VOF) method by FDM or FEM
I CIP advections based on Level-Set functions

(Akkerman et al. 2011, Himeno et al. 2012, Balabel 2015)
I Lagrangian Meshfree methods by ISPH or MPS

(Asai et al. 2012, Sarfaraz & Pak 2017, Hori et al. 2018)

The problem of the three-dimensional fluid simulations
Solving Navier-Stokes equation?

∂u

∂t
+ (u · ∇) u = −1

ρ
∇p + ν∇2u + g

→ Very high-cost to determine pressure
2 / 19



Setup LBM: The lattice Boltzmann Method

An alternative to standard solver

The key features of LBM
I Explicit in time stepping
I Highly parallelizable (local data)

The purpose of our research

Development of a three-dimensional
high-performance tsunami simulation model
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Setup LBM: What is the LBM?
An alternative numerical simulation method
I A mediator between macro-scale and micro-scale

→ A meso-scale analysis method (i.e. statistical method)
I Second-order accuracy in spacing discretization

ModelFluid
Macroscopic scale Microscopic scale

Collision

Streaming

Governing Equations
(Navier-Stokes Eqs.)

Lattice Boltzmann Eq.
(Particle distribution)

Chapman-Enskog expansion

Figure: A schematic illustration of the LBM’s basic concept
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Setup LBM: How to model flows
Fluid dynamics modeling
I Fluid movements are altered as virtual particles’ movements
I Solving the distributions by the simple linear equation
I In 3D model: 19 distribution functions (DFs) per grid

1

2
3

4

5

6

7

8

11
10

9

12

15 14

13

16

19

18

17

Figure: The three-dimensional nineteen-speed (D3Q19) lattice model
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Setup LBM: The basic algorithm of LBM
The lattice Boltzmann equation (the Lattice BGK equation)

Streaming Collision

feq
α → The equilibrium distribution functions, kernel function

feq
α = wα

[
ρ + 3eαu + 9

2 (eαu)2 − 3
2u · u

]

where, ρ: macroscopic fluid density, u: velocities
I For all grids:

1. Streaming: the functions move to the neighboring cells
2. Collision: the functions collide by BGK model, purely local
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LBM’s free surface model

The Volume of Fluid (VOF) approach (Thürey 2007)
I Advantages

1. Free surface movements calculated by DFs
2. Easy to parallelize the program on GPU (Janßen et al. 2013)

I Defects
1. Non-physical discontinuously interfaces
2. The fluid mass (total fluid volume in simulation) loss

The main purpose of our research

Development of LBM’s VOF model by PLIC
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Free surface model based on the VOF method
Cells’ status
I Fluid fraction C: Division cells into three types

Cell′s Type =


Gas (C = 0)
Fluid (C = 1)
Interface (Otherwise)
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Figure: The cell types required for the VOF method
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Piecewise Linear Interface Reconstruction (PLIC-VOF)
More accurate interface modeling concept
Interface shapes
I SLIC-VOF → Rectangular shapes
I PLIC-VOF → Trapezoid shapes (n · x = α)

Realistic Interface PLIC ApproximationSLIC Approximation

Figure: Interface reconstruction
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Basic algorithm of the PLIC-VOF
1. determine the interface normal (n = −∇C/‖C‖)
2. reconstruct interface (determine parameter α)
3. determine fluid flux and evaluate the new fill level Ct+1

SLIC-VOF PLIC-VOF

Figure: The advection of interfaces cells
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V&V: Classical dam-breaking flows
A V&V of MRT-LBM’s capability of handling realistic fluid
I Koshizuka et al. (2009), Martin & Moyce (1952)
I Verification: Spacing density profiles
I Validation: Dimensionless position of the surge front

Water Column

Width: L
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3L

Calculation parameters

Figure: Initial setting (left), Calculation parameters (right)
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Results: Dimensionless position of the surge front
A validation of the Mach number setting
I Domain settings: Martin & Moyce (1952)
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Figure: Timeseries of the dimensionless position of the surge front
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V&V: Dam-breaking flows with obstacle (Kölke 2005)
I Classical dam-breaking flows around obstacle
I Validation the accuracy of interface normal and face velocity
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Figure: Initial setting (left), Calculation parameters (right)
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Animation: Three-dimensional view
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Results: Interface shapes (two-dimensional view)
I Our model can reproduce the experiment in high resolution
I LBM’s boundary condition in ”corner grid” must be modified

Figure: Grid1, Grid2, Grid3, experimental data, from top to bottom
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Verification: Breaking wave (Lubin & Glockner 2003)

I Three-dimensional breaking wave in a rectangular tank
I Verification robustness of our model in such complex flow

Figure: Initial setting (left), Calculation parameters (right)
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Animation: Three-dimensional view
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Results: Free surface shapes in two-dimensional view
I Our model calculated the breaking wave well

→ A useful tool to simulate tsunami in three-dimension
I The treatment of free surface velocities requires carefully

Figure: Lubin & Glockner’s results (left), our results (right)
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Conclusion and future work

Conclusion
Remarkable features of our free surface model

1. Fully explicit in time integration

2. Seamless free surface shapes

3. Robustness in complex flows (e.g. breaing wave)

Future work
I Model improvement and development

1. 2D-3D Hybrid tsunami simulation model
2. Surface tension (additional)

I Further validation (flows around obstacle, etc...)
I Acceleration of codes
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Setup LBM: The lattice Boltzmann equation

The lattice Boltzmann equation

Streaming Collision

The computing algorithms of LBM

1. Streaming: copy the neighboring functions fi

2. Collision: compute the particles’ collision, purely local

Advantages of the lattice Boltzmann equation

1. Fully explicit method: No need to solve the Poisson equation

2. Fully advection scheme: No truncation error in advection term
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Setup LBM: Multiple-Relaxation-Time (MRT) model
Key features of the MRT-LBM
I Transforming functions fi into the independent moments
I Collision the functions by the independent relaxation time

The moment space in D3Q19 lattice model

The definition of moment space m in D3Q19 (Tölke et al. 2006)

Transforming matrix M always satisfy the following condition:
|m〉 = M |f〉 , |f〉 = M−1 |m〉

Collision term of the MRT-LBM
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Setup LBM: Multiple-Relaxation-Time (MRT) model
The ket-componets of transforming matrix M
I Creating the matrix from D3Q19 model’s vector componets ei

I Two formulations exist in D3Q19 model (return same results)
(Tölke et al. 2006, d’Humières et al. 2002)
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Setup LBM: Multiple-Relaxation-Time (MRT) model

The equilibrium functions in moment space meq

The functions are determined by density fluid ρ and velocity u as:

where ρ0 is constant density (ρ0 = 1)
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Setup LBM: Multiple-Relaxation-Time (MRT) model
The relaxation matrix in moment space Sl,i

The definition of the matrix in D3Q19 model (Tölke et al. 2006)

Relaxation parameters of conserved macro-scopic values
I Density and momentum are conserved in athermal fluid
I Non-conserved values approach the equilibrium (stable state)

The relaxation matrix except for sl,ω can be determined as:
sa = sb = sc = sd = se = −1.0
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Overview: The pseudo-compressibility of LBM
The non-dimensional values of Mach number
Mach number Ma satisfies the following formula using Knudsen
number Kn and Reynolds number Re:

Ma ∼ Kn · Re

When Re has a finite limit and Kn approaches 1,
Chapman-Enskog expansion can be used by parameter ε = O (∆x)

The Chapman-Enskog expansion
A perturbation expansion of the velocity distribution functions fi

under low Mach condition

fi = f
(0)
i + εf

(1)
i + ε2f

(2)
i + ε3f

(3)
i + ε4f

(4)
i · · ·

Macro-scopic equations (Navier-Stokes equations) can be obtained
by the Taylor expansion of the lattice Boltzmann equation
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Overview: The pseudo-compressibility of LBM
The sound speed and Mach number
General definition:

Ma ∼ ‖umax‖
cs

where ‖umax‖ is the maximum velocity in flow field

The macro-scopic equations (He & Luo 1997)
Results of the Chapman-Enskog expansion:

∇ · u = 0 + O
(
Ma2

)
∂u

∂t
+ u · ∇u = −∇p + ν∇2u + O

(
Ma3

)
Key features of LBM’s simulation

1. The pseudo-compressibility appears in O
(
Ma2)

2. Ma < 0.15 for incompressible flows
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Overview: The pseudo-compressibility of LBM

The definition of the sound speed in LBM
The sound speed cs in LBM is defined by ∆x and ∆t as:

cs = e√
3

= ∆x√
3∆t

→ The pseudo-compressibility must be controlled by time step ∆t

The maximum velocity in dam-breaing flows (Stansby 1998)
Analogically based on the shallow water theory:

‖umax‖ = 2
√

gH

where g is the gravity acceralation and H is the initial water height
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Algorithm: Interface normal (Pillod & Puckett 2007)
The most accurate method in explicit approach

∇C = 1
2∆x

 C̄x (x + 1) − C̄x (x − 1)
C̄y (x + 1) − C̄y (x − 1)
C̄z (x + 1) − C̄z (x − 1)


where C̄ is the averaged fluid fraction defined as follows:

C̄x (x, y, z) =
1∑

i=−1

1∑
j=−1

C (x, y + i, z + j) · wi,j

C̄y (x, y, z) =
1∑

i=−1

1∑
j=−1

C (x + i, y, z + j) · wi,j

C̄z (x, y, z) =
1∑

i=−1

1∑
j=−1

C (x + i, y + j, z) · wi,j

wi,j is the weighting function in Pillod & Puckett (2007)
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Algorithm: Determination of distance parameter
A root finding in PLIC-VOF (Scardovelli & Zaleski 2000)
Parameter α is estimated by the inverse problem of reconstruction
(i.e. The fluid fraction is given as the area ABNKHGML)

C = 1
6n1n2n3

[
α3 −

3∑
i=1

F3 (α − ni∆x) +
3∑

i=1
F3 (α − αmax + ni∆x)

]
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Algorithm: Evaluation of the fluid flux
Lagrangian-Explicit method (Aulisa et al. 2007)
The line segments move toward neighboring cells directly
(i.e. α and n are updated by face velocity in the next time step)
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Figure: The interface advection by the Lagrangian-Explicit approach
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Algorithm: Time evolution of the fluid fraction
The fluid fraction at the next time step
Lagrangian-Explicit method directly exchanges macro-scopic flux
The fraction level at the next time step Ct+1 can be calculated as:

Ct+1 = V Li+1,j + V Ci,j + V Ri−1,j

The split method is used for multiple-dimension advection

u i+1/2 , ju i-1/2 , j

VL i , j VC i , j VR i , j

Figure: The mass exchange between neighboring cells by the PLIC-VOF
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Verification: Lid-driven cavity flows (Ku et al. 1987)
A code verification of the MRT-LBM without free surface
I A primitive verification of the MRT-LBM
I Up to steady states (without turbulence model)

Moving Lid:

Calculation parameters

Relaxation rate is given as:

Figure: Initial setting (left), Calculation parameters (right)
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Results: Spacing velocity profiles
A comparison between the MRT-LBM and Ku et al. (1987)
I Spacing velocity profiles in steady state (Re = 1000)
I Our calculation code are in good agreement with Ku et al.

simulation results
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Figure: Spacing velocity profiles, x-axis (left), z-axis (right)
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Verification: Non-linear standing wave (Wu & Taylor 1994)

A numerical investigation of the pseudo-compressibility
I A Comparison verification of the MRT-LBM and BGK-LBM
I Total simulation time: 5.0s
I Spacing resolution: (x, y, z) = (400 × 100 × 300)
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1
.0

m
0
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Width: 0.5m

Still water surface Calculation parameters

Figure: Initial setting (left), Calculation parameters (right)
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Animation: Three-dimensional view
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Results: Spacing density profiles
I Both collision models satisfy the incompressible condition
I MRT-LBM: Natural profiles
I BGK-LBM: Non-physical, numerical oscillation

MRT is needed to simulate free surface flows by LBM approaches

Figure: Fluid density profiles of the BGK-LBM and MRT-LBM at t = 0.5s
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Results: Timeseries of the water level
I Linear theory: The linear solution of the Stokes’ theory
I Second order theory: The second order solution (non-linear)
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Figure: Timeseries water level at the center of the numerical tank 37 / 19
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