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EXTENDED BOUSSINESQ EQUATIONS FOR WAVES IN TWO POROUS LAYERS 

Changhoon Lee 1, Van Nghi Vu 2, Tae-Hwa Jung 3 and Thanh Thu Huynh 4 

In this study we continue the work of Vu et al. (2018) [Coastal Eng. 139, 85-97] to develop an 
extended Boussinesq model that predicts the propagation of water waves in two porous layers. 
The first and second layer can be a water layer or a porous layer. The inertial and drag 
resistances are considered in the developed model. After being successfully validated against 
the analytical solutions, the model is used to simulate waves propagating over a submerged 
triangular porous bar. The numerical results show good agreement with the physical 
experimental data of Hsiao et al. (1998) [Proc. Royal Society of London A 458, 1291-1322]. 

Keywords: two porous layers, submerged porous breakwater, extended Boussinesq equations, 
numerical experiment 

INTRODUCTION 

 
There exist multiple porous layers in coastal area. Submerged breakwaters are composed of two layers, 
i.e., upper non-porous water layer and lower porous layer. Rubble mound breakwaters are composed of 
two layers with different porosities. Sand beach is composed of one porous layer on the land side from 
the coastline. Also, it is composed of two layers with upper water and lower porous layers on the sea 
side. We need to have a wave model for such multiple porous layers. Until now, the Boussinesq 
equations have been developed for two layers with upper non-porous water layer and lower porous 
layer (Cruz et al., 1997; Hsiao et al., 2002). Liu and Wen (1997) developed conventional Boussinesq 
equations in shallow water for waves inside porous media including drag resistance but neglecting 
inertial resistance. These models cannot be applied for rubble mound breakwaters or sand beach. Lee et 
al. (2014) and Vu et al. (2018) developed extended Boussinesq equations for waves in porous media 
which considers drag and inertial resistances. The numerical solutions of their model are well verified 
by comparison with exact solutions and physical experiment data. In this study, we continue the work of 
Lee et al. and Vu et al. to develop a model for waves in two porous layers which can solve the 
aforementioned problems. The validity of the developed model is examined by comparing numerical 
results with analytical solution and experimental data. 

DEVELOPMENT OF GOVERNING EQUATIONS 
 
Setting-up boundary value problem 
In order to develop the extended Boussinesq equations for waves inside porous layers we first set up 
boundary value problems for waves inside multiple porous layers. The whole domain is vertically 
divided into the 1st, 2nd,…, and j th  layers which are numbered from the top to the bottom layers 

with different porosities, as shown in Fig. 1. The free surface is located at the 1st layer. 
Since the porosity is uniform, the continuity equation inside the j th  permeable layer is given by 

  3 0j  U  (1) 

where  , ,U u v w  is the seepage velocity vector,  3 , ,x y z         is the three-dimensional 

gradient operator, and the subscript j  implies the j th  layer. The momentum equation inside the 

j th  permeable layer is given by 
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where jp  is the pore pressure, jD  is the permeable drag resistance term, and jI  is the inertial 

resistance term. It should be noted that the continuity and momentum equations (1) and (2), respectively, 
are expressed in terms of the seepage velocity of the pore water.  
Several people defined the drag resistance term differently. Ergun (1952) define the drag resistance 

term in the Forchheimer (1901) type using a volume-averaged discharge velocity  'j j jU U . In our 

study, we use Ergun’s definition of D  in terms of the seepage velocity instead as 

  

2

2

2

2

1 ' 1 1 ' '

1 1 1

j l t

j

l t

j

D
dd

dd

   
    

   
 

      
   

      
   

U U U

U U U

 (3) 

where l  and t  are coefficients which represent the laminar and turbulent flow resistances, 

respectively,   is the kinematic viscosity of water, and d  is the solid size. The mathematical form of 
Eq. (3) including the parameters  ,  , and d  can be derived from the Navier-Stokes equation (Irmay, 
1958) or from the Reynolds equation (Burcharth and Andersen, 1995). The inertial resistance term jI  

is given by 
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j

d
I

dt
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where   is porosity, and   is added mass coefficient. In unsteady flow, the inertial resistance term is 
necessary to consider the divergence and convergence of streamlines in the presence of the solid 
material. The resistance term should consider both the local and convective accelerations. In Eq. (4), 
the value unity which is added to the added mass coefficient is to consider the inertial resistance of the 
water with the volume of solid material, and the added mass coefficient is to consider the inertial 
resistance in view of geometrical smoothness of the solid material. When the layer is filled with water, 
then 1   and the inertial resistance term becomes zero. When the layer is fully filled with the solid 

material, then 0   and the inertial resistance term becomes infinitely large. 
Several people proposed different momentum equations including the drag and inertial resistance terms. 
Sollitt and Cross’ (1972) momentum equation is the same as the present momentum equation (2) except 
that the convective acceleration is neglected to get a linear solution. van Gent’s (1994) momentum 
equation is the same as the present momentum equation (2). However, he defined the inertial resistance 
term only in the local acceleration as 
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where the value unity, which is omitted, should be added to the added mass coefficient. Cruz et al. 
(1997) proposed the momentum equation as 
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where the drag resistance term is defined in terms of the seepage velocity as 

  
 ' '

j l t j
D   U U U  (7) 

where '
l  and '

t  are coefficients which represent the laminar and turbulent flow resistances, 

respectively, and the inertial resistance term is defined as 
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The pressure jp  in Eq. (6) is a volume-averaged pore pressure because the spatial variation of the 

pressure is related to the acceleration of the volume-averaged discharge velocity Uj jd dt . 

Substitution of Eqs. (3) and (4) into the present momentum equation (2) gives 
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where j  is the inertial coefficient given by 

  
 1 1j j

        (10) 

and j  is the porous resistance coefficient given by 
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At the free surface, the dynamic and kinematic boundary conditions are given by 

  1 0,p z    (12) 

  1 1 ,w z
t

  
   


u  (13) 

where  ,u u v  is the horizontal velocity vector and  ,x y       is the horizontal gradient 

operator. At the impermeable bottom under the lowest J th layer, the normal velocity vanishes as 

   3 0,J J J J J Jz h w h z h       U u  (14) 

At the interface between the layers of different porosities, the pore pressure should be continuous in 
terms of the local pore pressure instead of the volume-averaged pore pressure. The difference of 
pressure forces between the layers will act on the solid material in the layer of smaller porosity. To the 
contrary, the normal flux at the interface should be continuous in terms of the volume-averaged 
discharge velocity. Thus, at the interface between the j th  and  1j th   layers, both the pore 

pressures at and normal fluxes through the interface are continuous as 

  1,j j jp p z h    (15) 

  
   1 1 1 ,j j j j j j j j jw h w h z h          u u  (16) 

We get the Boussinesq equations by specifying the boundary value problem with a governing equation 
and boundary conditions. The seepage velocity potential is defined as 

  3j j  U  (17) 

Then, the continuity equation (1) becomes 
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At the free surface, the dynamic and kinematic boundary conditions (12) and (13) become, respectively, 
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At the bottom, the kinematic boundary condition (14) becomes 
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At the interface, the continuities of the pore pressure and normal flux (15) and (16) become, 
respectively, 
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The variables are normalized using the relevant characteristic length and time as 
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where l  is the wavelength, 0h  is the maximum water depth, a  is the maximum amplitude of the water 

surface elevation, t  is the wave period. When the normalization is applied, the terms in the governing 
equation and boundary conditions will group according to two non-dimensional quantities  
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    (25) 

where   is the nonlinearity parameter and   is the dispersivity parameter. Omitting the primes for 

convenience, the continuity equation (18) and boundary conditions (19)-(23) become, respectively, 
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The velocity potential can be expressed as a power series in the vertical coordinate given by 
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Substitution of Eqs. (34) and (36) into the continuity equation (26) gives 
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Substitution of Eqs. (33) and (35) into the bottom boundary condition (29) gives  
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And, the velocity potential functions in the lowest layer   can be expressed in terms of 

,0J  using Eqs. (37) and (38) as 
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Thus, the velocity potential in the bottom layer J  can be expressed to the order of  2O   as 
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Development of Boussinesq equations for waves in two porous layers 
 
For two permeable layers, all the subscripts j   in the variables are 1,2j  . Thus, from Eq. (41), the 

velocity potential in the bottom layer 2   becomes 
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The velocity potentials 1  and 2  are related through the interface boundary conditions (30) or (31). 

We obtain the velocity potential function in the 1st layer 1,1  by applying the interface boundary 

condition (31) with 1j   and using Eq. (42) as 
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And, the velocity potential functions in the 1st layer  1,2 1,3, ,...   can be expressed in terms of 1,0  and 

2,0  using Eqs. (37) and (43) as 
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Thus, the velocity potential in the 1st layer 1  can be expressed to the order of  2O   as 
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The momentum equation in the 1st layer is obtained by substituting Eq. (46) into the dynamic free-
surface boundary condition (27) and then applying   to the resulting equation as 
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where 2,0 2,0 u  is the seepage velocity in the 2nd layer. The momentum equation in the 2nd layer is 

obtained by substituting Eqs. (42) and (46) into the interface continuity of pore pressure (30) with  
1j  , and then applying   to the resulting equation as 
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Or, using Eq. (47), 
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Here, we use the depth-averaged velocity defined as 
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After substituting Eq. (46) into Eq. (50) with 1j  , the seepage velocity at the lower boundary of the 

1st layer can be expressed in terms of the depth-averaged velocity as 
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After substituting Eq. (42) into Eq. (50) with 2j  , the seepage velocity at the lower boundary of the 

2nd layer can be expressed in terms of the depth-averaged velocity as 
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Substitution of Eqs. (51) and (52) into Eq. (47) gives the momentum equation in the 1st layer as 
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Substitution of Eqs. (51) and (52) into Eq. (49) gives the momentum equation in the 2nd layer as 
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The continuity equation is obtained by substituting Eq. (46) into the kinematic free-surface boundary 
condition (28) as 
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Eqs. (53)-(55) are the set of Boussinesq equations for waves in two permeable layers.  
 
If the 1st layer is not in porous media but in clean water, then 1 1  , 1 1   and 1 0  , and thus Eqs. 

(53)-(55) become the Boussinesq equations of Cruz et al. (1997) which are for waves on a single 
permeable layer. If the 1st layer is in clean water and the interface between the 1st and 2nd layers is 
rough, then 1 1  , 1 1   and 1 1  , 1 / 2f  U  where f  is the friction factor related to the shear 

stress on the rough interface. Further, if waves are very long, the resulting equations (53)-(55) are 
similar to the shallow-water equations of Kobayashi (1986). 
 
In physical variables, Eqs. (53)-(55) are 
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Extended Boussinesq equations for waves inside two permeable layers 
 
The momentum equation (56) is rewritten by expanding the dispersive term as 
 

     

   

1 1 1 1 1 1

2
1 2

1 1 1 1 2 1 2
1

1 1 1 1 1 1 1 1 1

1

2 3

1
0

2

g
t

h
h h h

t

h h gh h
t

   


 



    

       

                 
                       

u u u

u u

u

 (59) 

From the lowest-order momentum equation in the 2nd layer, we can get the following relation 
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Using this relation, the last term in the momentum equation (59) becomes 
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From the above equation, the zero equation is obtained by multiplying a small number 2  as 



 COASTAL ENGINEERING 2018 
 

9

   

 

2 1 2
2 1 1 1 2 1 2 2 1 1 2 1 2

1 2 1

1 2
1 2 1

2 1

0

h h h h h h
t

g h h h

  
    

  

 


 

                                   

 
        

 

u u

 (62) 

When this is added to Eq. (59), we have the extended momentum equation 
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NUMERICAL VERIFICATION 
 
Numerical scheme 
 
The finite-difference method is applied to solve the extended Boussinesq equations (58), (59), and (63). 
The time derivative terms are discretized with the Adam-Bashforth-Moulton predictor and corrector 
scheme following Wei and Kirby (1995). The first-order spatial derivative terms are discretized up to 

 4x  . The higher-order spatial derivative terms in the momentum equations that are dispersive 

terms are discretized up to  2x  . The variables 1 2, ,u u  are placed in an un-staggered grid system. 

Eqs. (58), (59), and (63) can be rewritten in one-dimensional domain as 
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The term with the subscript in Eqs. (64)-(75) implies that the term is taken derivative with respect to the 
subscript. The third-order Adams-Bashforth predictor scheme is used as 
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where the superscripts n  and 1n   denote the present and the future time steps, respectively. The 

variables 1
,
n
i ju   and  1

,
n
i jv   which are included in 1

,
n
i jU   and 1

,
n

i jV  , respectively, are calculated using the 

LU decomposition method. After the values of 1
,( , , )n

i ju v   are evaluated, the fourth-order Adams-

Moulton corrector scheme is used as 
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The corrector step is iterated until total relative error between successive results is within a certain 
limit.  
  
MODEL VERIFICATION 
 
Linear waves inside two porous layers 
 
The computational domains for waves propagate in 2 porous layers are given in Figs. 1 (a) and (b). The 
laminar and turbulent resistances and the added mass coefficient of the two porous layers are the same 
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and given by 150, 1.75, 0.47l t     , the porosities are 0.44;0.9  , the material sizes are 

0.67 ;3d cm cm . 

 

a) 

 

b) 

Figure 1. One dimensional computational domain 

Figs. 2 (a), (b), and (c) compare numerical solutions of water surface elevation and wave amplitude 
with the corresponding analytical solutions in shallow and deep waters with different porosities. The 
water depth of lower layer is double the upper layer (i.e., 2 12h h ). In this case, the wave amplitude is 

negligibly small and thus, we can use the analytical solution for linear waves given by  0 exp ia k x  

where ik  is imaginary part of the complex wavenumber. The numerical solutions of surface elevation 

and wave amplitude are almost the same as the analytical solution for all the cases. In deep water with 
the first non-porous water layer and the second porous layer, waves propagate with almost no energy 
dissipation. Waves in shallow water are damped more than in deep water. 
 

1 2 10.1 , / 2, 6seckh h h T      1 2 1, / 2, 1.6seckh h h T     

  

a) 

  

b)

  

c) 

Figure 2. Normalized water surface elevation and amplitude in shallow (left figures) and deep 
(right figures) waters. a) 1 1  , 2 1  ; b) 1 1  , 2 0.44  , 2 0.67d cm ; c) 1 0.9  , 1 3d cm , 
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2 0.44  , 2 0.67d cm  blue solid line = numerical solution of water surface elevation; dashed 

line = numerical solution of wave amplitude; filled circle = exact solution of wave amplitude.. 

 
Waves over a submerged triangular porous bar 
 
Furthermore, the numerical results of the developed model are verified with the experimental data of 
Hsiao et al. (2002) for nonlinear waves. The experiment was conducted for the horizontal one-
dimensional waves propagating over a submerged triangular porous breakwater. Waves with height of 
2.7 cm and period of 1 sec are internally generated in a constant depth of 0.175 m. The porosity 
characteristics of the porous breakwater are given as 0.42  , 1100l  , 

0.81t  , 0.47  , d=19 mm .The computational domain with 9 wave gauges is given in Fig. 3. 

 

 
Figure 3.  Computational domain given by Hsiao et al. (2002) 

 
Fig. 4 shows that the numerical solutions of water surface elevations are close to the experimental data 
at all gauges. It should be noted that using the present model we do not need to use any matching 
conditions at the interfaces of the submerged porous breakwater. It should be noted that gauge G1 was 
installed in front of the toe of the submerged breakwater while gauge G7 was at the crest of the 
breakwater. 
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Figure 4.  Comparison of present numerical solutions with experimental data of Hsiao et al. 
(2002): solid line = numerical solution; filled circle=experimental data 

CONCLUSIONS 
 
This paper derived an extended Boussinesq model for waves in two porous layers considering inertial 
as well as drag resistances. For linear waves in two porous layers, numerical solutions are close to 
analytical solutions. For waves above a submerged triangular porous breakwater, numerical solutions 
are well compared with the experimental data of Hsiao et al. (2002). 
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