NRC-CNRC

Design and Physical Model Studies of Innovative Living Breakwaters

Pippa Brashear – SCAPE

Paul Tschirky – Geosyntec Consultants (formerly Arcadis)

Joseph Marrone – Arcadis

Max Larson – COWI

ICCE2018 | Baltimore, USA | Jul 30 - Aug 03, 2018

Project Background

- Tottenville, Staten Island Raritan Bay (Lower NY Harbor)
- Shallow estuary that historically supported commercial fisheries and shell-fisheries, depleted by habitat degradation over the last century
- Tottenville shoreline once a vibrant destination for water-based recreation, has suffered from high rates of erosion over the past decades (likely due in part to the loss of extensive oyster reefs)

Project Background

- Tottenville area of Staten Island experienced significant damage due to waves and flooding during Hurricane Sandy
- > Caused loss of life and significant harm to the local economy

Project Background

- June 2013: U.S. Dept. of Housing and Urban Development launched the "Rebuild by Design" competition
- > Respond to the devastation caused by Superstorm Sandy and help the impacted region to plan and design more resilient communities for the future

Living Breakwaters: one of several projects chosen for funding

Living BreakwatersProject Concept

- Innovative concept consisting of a one mile-long system of breakwaters with reef-like enhancements designed to:
 - Attenuate damaging storm waves
 - Reduce or reverse long-term coastal erosion
 - Enhance ecosystems by creating structured marine habitat
 - Foster social resilience by encouraging the use and stewardship of the shoreline and nearshore waters

Living Breakwaters Conceptual Layout

Living Breakwaters Conceptual Breakwater Design

- Linear trunk section with two roundheads (conventional BW)
- Several ocean-facing "reef ridges" and "reef streets"

Living Breakwaters Conceptual Breakwater Design

- > Two types of bio-enhancing concrete units proposed:
 - ECOncrete[®] Armor Unit
 - Encourage growth of marine organisms, function as toe armor unit
 - ECOncrete[®] Tide Pool
 - Create local ecosystems within the tidal zone along reef ridges

Living Breakwaters Site Conditions

- > Structures to be located between -6 and -10.5ft contours (-1.83 to -3.20m)
- > Typical tide range -2.6ft to +2.1ft (-0.80 to +0.64m)
- ➤ 100-yr storm surge level +12.9ft (+3.93m)
- > Extreme water level of +15.4ft (+4.69m) also investigated to account for severe storm surge with an allowance for sea level rise
- > 30-yr hindcast shows largest waves tend to approach the project site from the east (where the fetch is greatest)
- > 100-yr design storm wave: $H_s = 5.3 \text{ft} (1.62 \text{m}) \& T_p = 5.0 \text{s}$
- > Overload condition: $H_s = 7.7 \text{ft} (2.35 \text{m}) \& T_p = 7.0 \text{s}$ also investigated

Physical Modeling Studies Objectives

- Required to confirm and refine the initial breakwater design and layout, and in particular to:
 - Determine optimal stone gradations
 - Optimize the breakwater height / width ratio
 - Determine wave transmission characteristics at high tide levels
 - Qualitatively determine flow characteristics and sedimentation in, on, and around the reef ridge features for ecological design
- Two-pronged approach involving the design, construction, and operation of two separate but closely related physical models was undertaken to achieve these objectives

OverviewOverview

- Combination of 2D and 3D physical modeling
- Confirm and refine breakwater design elements and features, particularly for extreme events
- Conducted at 1:20 scale in NRC's Coastal Wave Basin 205ft (63m) long by 46ft (14m) wide

Breakwater Stability Study Model Design and Construction

Construction of an idealized foreshore bathymetry down to the -20ft (-6.1m) contour to accurately model nearshore wave transformations

Breakwater Stability Study Model Design and Construction

- Stone materials and gradations prepared to replicate the characteristics of the proposed prototype materials
- Three armor classes (narrow) and two core classes (wide)

Breakwater Stability Study Model Design and Construction

- > 265 + 200 model scale bio-enhancing concrete units fabricated for use in this study
- Hand placement of all armor stone and concrete units to replicate prototype placement

Breakwater Stability Study Wave Calibrations

Series of undisturbed wave tests to produce the desired wave conditions at the test site, 14 wave gauge measurements

Breakwater Stability Study Testing

> Breakwater stability assessed over a range of conditions with varying wave heights, wave periods, and water levels

> Photographic damage analysis system used to monitor the

movement of armor stones

Breakwater Stability Study Results

- Stability of proposed crosssections was adequate under design and overload conditions
- Several recommendations made regarding prototype placement requirements for the bio-enhancing concrete units

Breakwater System Layout Study Overview

> 3D physical model validating the overall system performance, including the degree of wave attenuation along the shoreline for a range of mild to extreme conditions

Conducted at 1:80 scale in NRC's Large Area Basin

165ft (50m) long by 100ft (30m) wide

State-of-the-art directional wave generator with 72 independent wave boards

Breakwater System Layout Study Model Design and Construction

Construction of faithful foreshore bathymetry from the mean high water shoreline down to the -40ft (-12.2m) contour to accurately model nearshore wave transformations

Breakwater System Layout Study Wave Calibrations

- Series of undisturbed wave tests to produce the desired wave conditions across the test site, wave conditions measured at 21 locations using capacitance wave gauges
- Orbital velocities and wave-induced currents measured at two locations with 2-axis electromagnetic current meters
- Circulation patterns along the shoreline and in the vicinity of the breakwaters qualitatively assessed by observing plumes of colored dye

Breakwater System Layout Study Testing and Results

- Performance of breakwater system layout assessed over a wide range of conditions with varying wave heights, wave periods, wave directions, and water levels
- Optimization of breakwater lengths and alignments: revised layout performed adequately and resulted in significant nearshore wave attenuation

Physical Modeling Studies Conclusions

- Two-pronged physical modeling study to support the detailed design of the Living Breakwaters project in Raritan Bay
- Senerated valuable information concerning breakwater design and performance which will be used to further optimize and support the final design, and obtain the necessary permits required for construction
- > The results will also help inform other breakwater designs that look to incorporate reef ridges and other elements to improve ecological performance

CONTACT

Scott Baker

National Research Council Canada scott.baker@nrc.ca

