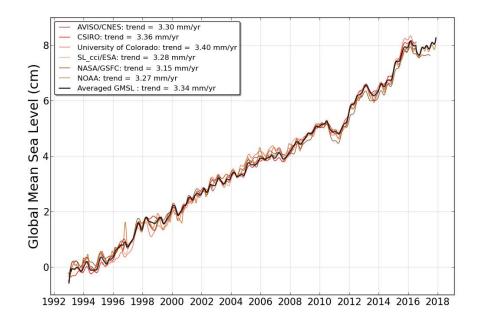
Geocentric mean sea level fields at the German North Sea and Baltic coast

<u>Jessica Kelln</u>, Sönke Dangendorf, Jürgen Jensen Justus Patzke Wolfgang Niemeier Ulf Gräwe Victor Malagon Santos University of Siegen University of Hamburg-Harburg Technical University of Braunschweig Leibniz Institute for Baltic Sea Research (IOW) University of Central Florida



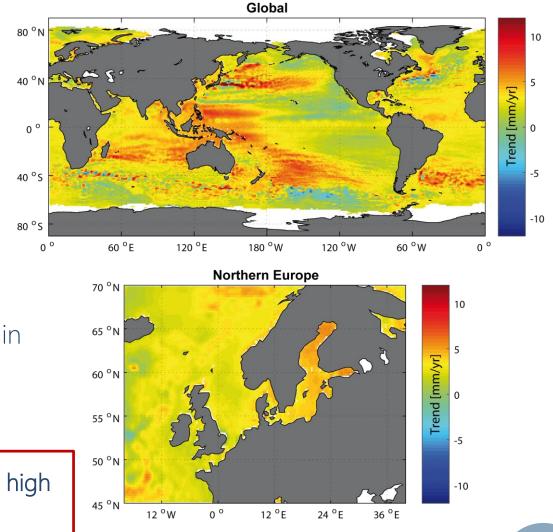
36th ICCE 2018 · Baltimore MD USA · July 30th, 2018

Introduction

Global

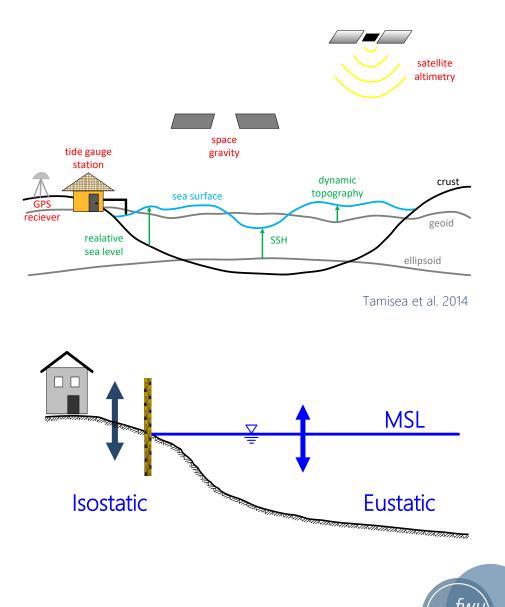
- Global Mean Sea level (GMSL) trend since 1993: ca. 3.3 mm/yr
- Constant acceleration of GMSL since 1993
- Cause: increasing contributions from ice sheets and especially Greenland!

WCRP GMSL Budget, 2018

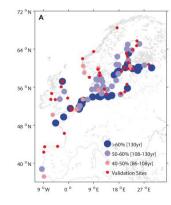


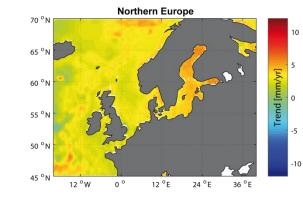
Introduction

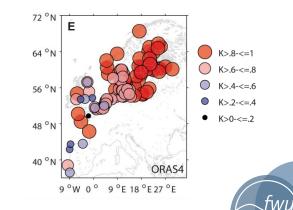
Regional


- Regional MSL trends can vary significantly from the global average
- Complex regional structures, resulting especially from mass redistribution
- North Sea and Baltic Sea show significant regional differences in the linear Trends (ca. 3 to 6 mm/yr)

There is need for long (temporal) and high resolution (spatial) MSL Information!


Data


- Satellites measure the absolute sea level relativ to the reference ellipsoid → no vertical land movements and no ocean basin deformations are measured
- Tide gauges measure Sea level
 relativ to the land surface → only source for the detection of global volume changes



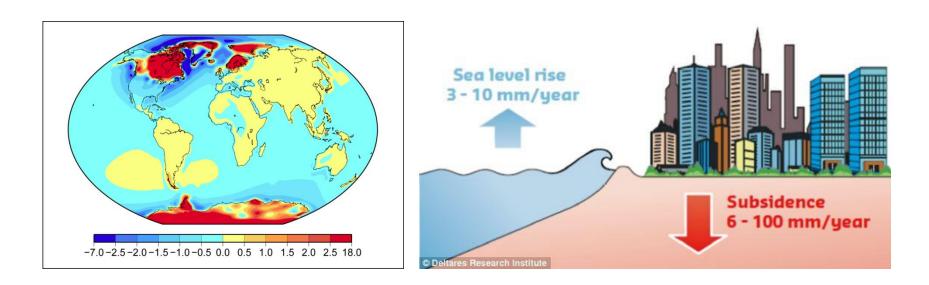
Data

Tide gauges	Satellite Altimetry	Ocean reanalysis
Novel dataset: > 130 MSL records 1799-2013	AVISO ESA CCIv1 ESA CCIv2	SODA ORAS4
Long temporal informations	 High spatial resolution ASL (no VLM contamination) 	 High spatial and temporal resolution ASL (no VLM contamination)
 Pointwise information "Contaminated" by VLM 	Limited temporal information 1993-2016	A model cannot capture all processes

Goal

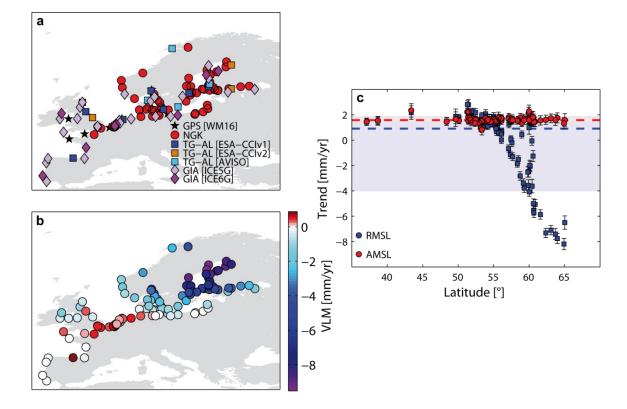
- \rightarrow Combining the advantages of different measurement types
- → Calculate geocentric sea level fields along the entire German North and Baltic Sea coastline having the same spatial resolution as satellite altimetry and/or ocean reanalysis and the same temporal information as TGs

BUT: VLM correction of TGs is necessary!

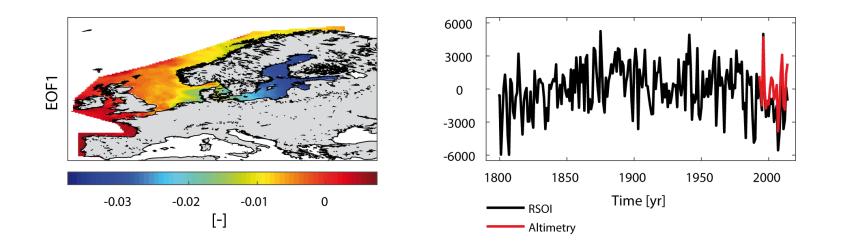


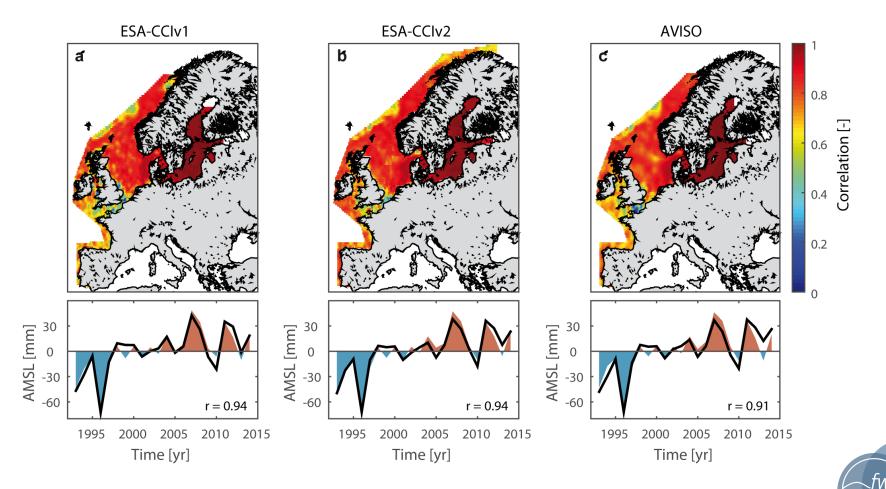
Vertical land movements (VLM)

Causes of VLM:


- Glacial isostatic adjustment (GIA)
- Current mass changes due to glaciers, ice sheets and terrestrial water reservoirs
- Local effects (groundwater / gas extraction, earthquakes, etc.)

Vertical land movements (VLM)


- VLM estimates from different data sources are carefully evaluated at each TG using a novel algorithm
- Assuming: majority of the trend differences between individual locations is indeed driven by VLM
- Searching for the combination of VLM estimates, which minimizes the spatial RSL trend variability over all stations


Empirical orthogonal functions (EOF's)

- Decomposition of satellite altimetry/ocean reanalysis data into spatial modes and their temporal amplitudes
- Temporal reconstruction of the amplitudes with tide gauge measurements in a least squares sense

• EOF: good agreement between satellite measurements and reconstruction from TGs

>60% [130vr

50-60% [108-130vr]

40-50% [86-108vr

27 °E

Validation Sites

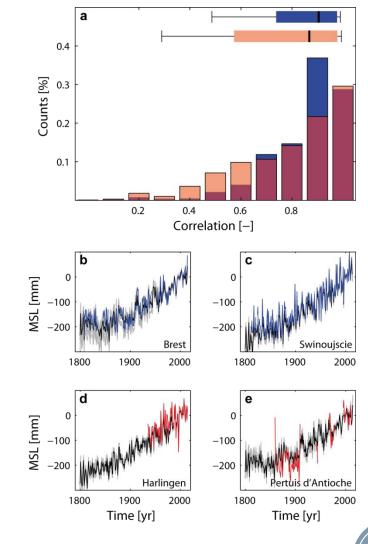
18 ^oE

- Testing the reconstructed ASL fields at TG stations (blue = considered in reconstruction; red = unconsidered)
- Good performance at most TGs, just a few outliers

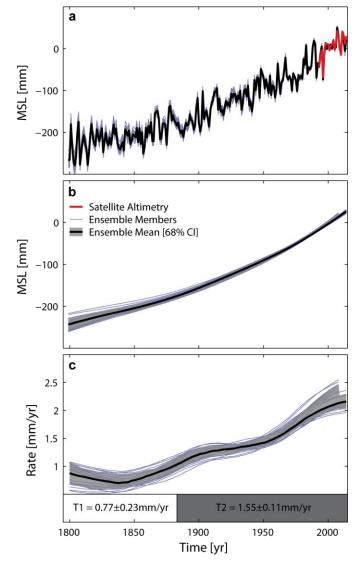
72 ° N

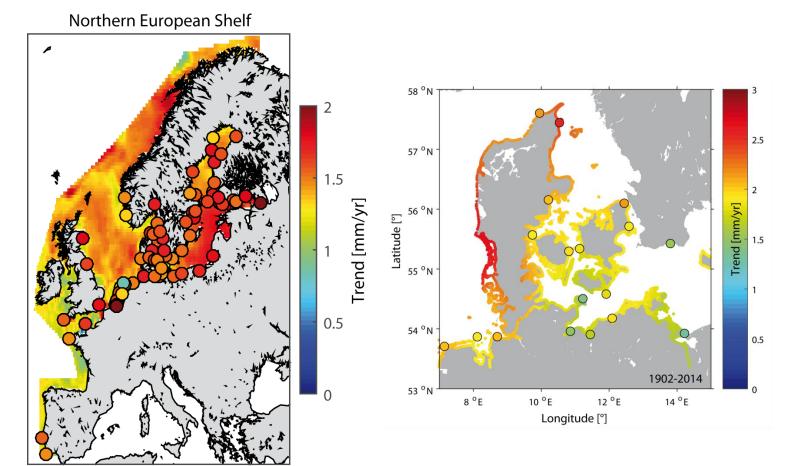
64 ° N

56 ^o N


48 ° N

40 ° N


9°W


0 0

f

- Northern european shelf: mean of 24 ensemble reconstructions (different combinations of input data)
- All reconstructions show a very good agreement
- Non-linear trends show a significant acceleration over the entire period

Conclusions

- Reconstruction methods (EOF) as a tool to generate high resolution data-driven MSL reconstructions of similar spatial coverage as satellite or model data and the same temporal availability as TGs.
- As a result, **geocentric sea level fields** along the entire German North and Baltic Sea coastline with a high spatial and temporal resolution are provided.
- These can be used to put recent satellite altimetry measurements in a historical context and track potential long-term changes and accelerations along the entire coastline in order to inform planners, policy makers and the general public as well.

Thank you for your attention!

Dipl.-Ing. Jessica Kelln University of Siegen Research Institute for Water and Environment (fwu) Paul-Bonatz-Str. 9-11 57076 Siegen

jessica.kelln@uni-siegen.de www.fwu.uni-siegen.de/wb/

References

- Church et al. (2013): Sea Level Change. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change: United Kingdom Press, and New York, NY, USA.
- Dangendorf et al. (2017): Reassessment of 20th century global mean sea level rise. In: Proceedings of the National Academy of Sciences of the United States of America 114 (23), S. 5946–5951. DOI: 10.1073/pnas.1616007114.
- Hay et al. (2015): Probabilistic reanalysis of twentieth-century sea-level rise. In: Nature 517 (7535), S. 481–484. DOI: 10.1038/nature14093.
- Peltier, W. R. (2004): Global glacial isostasy and the surface of the ice-age earth: The ICE-5G (VM2) Model and GRACE. In: Annu. Rev. Earth Planet. Sci. 32 (1), S. 111–149. DOI: 10.1146/annurev.earth.32.082503.144359.
- Santamaría-Gómez et al. (2017): Uncertainty of the 20th century sea-level rise due to vertical land motion errors. In: Earth and Planetary Science Letters 473, S. 24–32. DOI: 10.1016/j.epsl.2017.05.038.
- VESTØL et al. (2016): NKG2016LU, an improved postglacial land uplift model over the Nordic-Baltic region. Vortrag, Presentation at Nordic Geodetic Commission Working Group of Geoid and Height Systems meeting, Tallinn.
- Wahl et al. (2011): Improved estimates of mean sea level changes in the German Bight over the last 166 years, Ocean Dynamics, 61, 701-715.
- Wöppelmann and Marcos (2015): Vertical land motion as a key to understanding sea level change and variability, Surv. Geophys., 54, 64-92.

