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MOTIVATION

o Many coastal systems across the world include natural

longshore multi-bar systems;

o Need of proper simulation of the bar-berm material exchange

to realistically reproduce the seasonal behaviour of the

beach profile;

o Improvement of the numerical capabilities of regional coastal

evolution numerical models (shoreline evolution models).



OBJECTIVES

o Investigate the numerical approaches for simulating cross-

shore sediment transport and long-term profile evolution;

o Develop a subaqueous sub-model for simulating the

evolution of a two-bar system, as well as the response of

feeder mounds to incident waves;

o Test the developed model against available data.



Theoretical Developments. One-bar systems

Bar-berm material exchange model (Larson et al., 2013)
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Theoretical Developments. Two-bars systems

For 0<δ<1, the outer bar starts to form and grow.

Bar-berm material exchange model

forcing conditions:
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Theoretical Developments. Two-bars systems

For δ>1, the outer bar grows relatively larger than

the inner bar (VBE
O

>>VBE
I

)

Bar-berm material exchange model

forcing conditions:
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Theoretical Developments. Two-bars systems

Hypothetical bar equation for nearshore placements

forcing conditions:
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Duck, N.C. case study. Data employed

Beach profiles measurements:

Time series of a two-bars system

Duck, North Carolina

(Morphological properties of the inner and

outer bar: volumes, depth, length, mass

center etc.)

Frequency: 2-3 times/month by FRF

Monitoring period: 

26-Jan-1981 to 09-Sep-1988 (inner)

26-Jan-1981 to 28-Dec-1989 (outer)



Duck, N.C. case study. Data employed
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Beach profiles measurements:

o Wave data employed were recorded with a

waverider buoy located in 18 m water depth,

directly off the FRF research pier.
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Duck, N.C. case study. Model calibration and validation

∆t=6 h (time step)

Beach profile measurements divided into two main periods:

1981-1985: for model calibration of the site-specific parameters (m, CB, λ0, δ0, Hc)

1985-1989: for model validation.

Two definitions were used to address the model performance:

ε=
 i=1
N VB

obs
−VB

cal
2
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2
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Duck, N.C. case study. Model calibration and validation

Without exchange between the inner and outer bar

critical wave height, Hc=2 m

VBE, initial
I

= 49.2 m3/m 

VBE, initial
O

= 16.2 m3/m

Water temperature= 15ºC

least-square error:

ε, total=0.51 (NMSE=0.24)

ε, inner=0.55 (NMSE=0.33)

ε, outer=0.39 (NMSE=0.24)



Cocoa Beach, FL case study. Data employed

Line located at 

150 m, 

northern part:

Calculated 

average profile 

evolution: 

Fill volume: 121 000 m3 of sand

Dates: from 6-Jun to 24-Jul 1992

Area: 2 895 x (200-245m)

VB, initial
I

= 0 m3/m 

VB, initial
O

= 0 m3/m 

(no natural bar was surveyed)

Fill volume = 47.3 m3/m

(calculated based on surveys)

Wave hindcast with a 3-hour time 

step 



Cocoa Beach, FL case study. Model calibration and results

Hypothetical bar equation

applied to reproduce the

inshore portion (inner) and

offshore mound (outer).

VBE
I

, VBE
O

= 0 m3/m

Wave heights thresholds:

Hb1= 4.2 m

Hb2= 2.0 m

Water temperature = 26ºC

d50= 0.20 mm

least-square error: ε=0.03

NMSE=0.001



Final remarks. Conclusions

o An extended version of the heuristic model, first introduced by Larson et al. (2013), was here developed

to reproduce the overall shift in material between the bar system and the berm of the profile by taking

into account the long-term evolution of two-bar systems and the response of offshore mounds.

o The model was calibrated and validated in standalone mode at two field sites from the United States:

1) Duck, NC, where two natural longshore bars (an inner and outer bar) typically form;

2) Cocoa, FL, where an offshore mound was located in deep water, where no natural bar was found;

o Overall, equilibrium volumes and rate-of-change coefficients were related to non-dimensional wave and

sediment properties, but during the calibration certain coefficient values had to be obtained through

comparison with data and subsequently validated;

o Although the set of criteria presented should provide a first rough estimate of suitable values,

parameters such us the Hc and Hb are expected to be site-specific and data are needed to apply the

model with confidence at a particular site.



Final remarks. Conclusions

o The equilibrium model was skilled at predicting the time-varying volume of the outer bar, suggesting that

this morphological feature is strongly influenced by offshore wave forcing in a predictable,

equilibrium-forced manner.

o Model skill was lower when predicting the inner bar evolution due to the scatter of the observations. It is

yet to be explored if the inner bars in a multi-bar sites display predictable, equilibrium driven cross-shore

behavior, similar to outer bars and shorelines.

o The model prediction with focus on the evolution of nearshore mounds has been also successful

through the simulation of hypothetical bars defined by VBE
O

= 0;

o The potential for using rather simple models to quantitatively reproduce the main trends in the

subaqueous beach profile response in a long-term perspective through description of cross-shore

volume changes in bars has been demonstrated.
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