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INTRODUCTION 
 
Surface waves in the coastal zone induce oscillatory 
flow motions in the vicinity of the seabed. These wave-
induced coastal flows interact with the sandy seabed 
and modify the bed shape by generating coherent 
small-scale bed structures, which are generally known 
as ripples. The presence of ripples in oscillatory flows 
is important due to the impact they have on the seabed 
roughness and how they affect the near-bed boundary 
layer hydrodynamics. Simulations of higher and more 
real-scale Reynolds number (Re) require the use of 
supercomputers in order to obtain results in a 
reasonable amount of time. However, the constant 
evolution of the computing facilities makes the 
development of parallel algorithms a rather difficult 
task. The objective of the proposed research is to 
advance in the comprehension of coastal processes 
utilizing high performance computing (HPC) for the 
numerical simulation of the three-dimensional, 
turbulent flow, which is induced in the coastal zone by 
wave propagation. In particular, our CFD code 
(SimuCoast) has been developed using a hybrid 
MPI+OpenACC execution model that increases its 
scalability and allows it to engage the vast majority of 
high-end supercomputers. Special attention has been 
paid in the parallelization strategy of the Poisson solver 
that is the most computational demanding operation. 

 
METHODOLOGY 
 
The discretization of the Navier-Stokes equations is 
done on a Cartesian staggered grid following the 
methodology proposed in Grigoriadis et al. (2012). The 
numerical methodology is based on the extension of 
the immersed boundary method proposed by Balaras 
(2004) for representing the sea bottom. Additionally, an 
adaptive mesh refinement is utilized for the numerical 
solution of the equations. Large eddy simulation (LES) 
was used for simulating turbulence. In this approach, 
the flow structures are separated into the large eddies, 
which are explicitly solved, and the small eddies, which 
are parametrized with the use of an eddy-viscosity 
subgrid scale (SGS) model.  

 
HPC IMPLEMENTATION 
 
SimuCoast is written in Fortran using an object 
oriented implementation approach. Hence, the code 
facilitates the programming of new math and physical 
models, and encapsulates the complexity of the 
parallelization strategy. The parallel strategy consists 
in using a two-level hybrid MPI+OpenACC 
parallelization (see Figure 1). 
 

 
 
Figure 1 – Levels of parallelism and programming models 
exploited by SimuCoast in a hybrid supercomputer. 

 
 
The inter node implementation consists in a distributed 
memory approach with communications that transfer 
the information between processors by means of the 
MPI protocol. The communication episodes are 
performed in a non-blocking way that reduces part of 
the communication costs and increases the scalability 
code. The intra-node computing is based in the 
OpenACC standard in order to exploit the different 
computing units of the nodes (multicore CPUs or 
accelerators). This approach facilitates the utilization of 
hybrid nodes since its portability is simplified to just 
changing the compilation flags of OpenACC, reducing 
the programming costs of re-writing large parts the 
code for using the accelerators. 
 
The algorithm is based in the fractional step method for 
decoupling the pressure and the velocities. The solution 
of the Navier-Stokes equations is represented as loops 
that sweep the computing domain (Cartesian grid) for 
applying discretized operators. The iterations within 
these loops are independent to each other, and thus 
can be easily parallelized using OpenACC. 
 
On the other hand, the Poisson equation needs to be 
solved once per time integration step and becomes the 
main bottleneck of the simulation. Our Poisson solver is 
composed by a combination of the Fourier 
decomposition for the two directions (x and y) with 
periodic boundary conditions and a direct solver for the 
z-direction (Borrell 2011). The improvements in the 
solver have empowered our code (up to 60 times of 
acceleration), making it capable of running peta-scale 
simulations. 
 
RESULTS 
 
The numerical results of this study were performed on 
the thin nodes of the Aris supercomputer of the Greek 
research & technology network (GRNET), this is a tier-1 
system of the Partnership for Advanced Computing in 
Europe (PRACE). Each node is composed by two Intel 
Xeon E5-2680v2 10-core processors interconnected by 
a network Infiniband FDR1. The numerical experiments 
consist in two stages: first the validation of the code, and 
second, the analysis of the parallel performance of the 
code. 
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We validated our code with the experimental case of 
Fredsoe et al. (1999). HPC implementation allowed us 
to work with a denser grid than the one of Grigoriadis 
et al. (2012) and, consequently, achieving better 
results for the velocity profiles (Fig. 2). 

 

                             
 
Figure 2 – Profiles of phase-averaged streamwise velocity 
at the ripple crest (left: ωt = 0, right: ωt = 270). 
 

The same flow was also simulated for a substantially 
higher Reynolds number of Re=2×10

5
 which verified the 

good scalability of our code. Figure 3 depicts that the 
parallel efficiency of the code is up to 80% when using a 
grid of 100,000,000 cells and engaging 64 computing 
nodes (1280 CPU-cores).  
 

 
Figure 3 – Strong speedup of the performed simulations for 

three different grid sizes. 

 
The direct Poisson solver for cases with two periodic 
boundary conditions was compared with a commonly 
used iterative solver, the Preconditioned Conjugate 
Gradient (PCG). In cases with more than 50 million 
cells, it was observed that the direct solver accelerates 
the Poisson equation in more 60 times (Fig. 4).   
 

 

 
Figure 4 – Average acceleration of direct solver 
2FFT+TDMA compared with an iterative PCG solver 

 
ACKNOWLEDGEMENTS 
 
This work was funded by the matching contribution 
(5231) of GSRT to the Initial Training Network 
SEDITRANS, implemented within the 7th Framework 
Programme of the European Commission, and was also 
supported by computational time granted from the Greek 
Research & Technology Network (GRNET) in the 
National HPC facility – ARIS – under project ID 
CoastHPC. 
 
REFERENCES 
 
Grigoriadis, Dimas and Balaras (2012): Large-eddy 
simulation of wave turbulent boundary layer over rippled 
bed, Coastal Engineering, vol. 60, pp. 174-189. 
 
Balaras, E, (2004): Modeling complex boundaries using 
an external force on Cartesian grids in large-eddy 
simulations, Computers & Fluids, vol. 33, pp. 375-404. 
 
Borrell, Lehmkuhl, Trias, Oliva (2011): Parallel direct 
Poisson solver for discretisations with one Fourier 
diagonalisable direction, Journal of Computational 
Physics, vol. 230, pp. 4723-4741. 
 
Fredsøe, Andersen and Sumer (1999): Wave plus 
current over a ripple-covered bed, Coastal Engineering, 
vol. 38, pp. 177-221.  


