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Introduction 
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 Lake Erie has the fourth largest

surface area, shallowest water

depth and smallest volume among

the five Great Lakes in North

America.

 The lake is 390 km long and 90 km

wide. The average depth and

maximum depths are approximately

20 m and 64m (NOAA).

 The dominant wind direction over

Lake Erie is southwest-northeast,

along the lake’s longitudinal axis.

Lake Erie Bathymetry and Study Area 
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Seiche in Lake Erie
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 High wind and moving pressure systems

can result storm surges of up to 3 m on

Eastern Lake Erie and significant drop

in the water level at Western Lake Erie

due to its shallow depth.

 Such a water level gradient can trigger

unique post-storm free water-level

fluctuations or seiches in Lake Erie.

Schematic Drawing of Seiche
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 Seiches are developed as standing waves in the lake travelling across the lake

and rotating counterclockwise until their energy dissipates.

 A seiche event in 1844 was reported as “one of the greatest disasters in

Buffalo’s recorded history.” It “occurred without warning, breaching the 14-

foot seawall, flooding the waterfront, and drowning at least 78 people”

(Buffalo Architecture and History 1865).

7



Water level variations following Lake Erie’s Storm of January 30, 2008 

 Surge and seiche following an extreme event
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 Spectra of Lake Erie Long-term Water Level 1975-2015
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 Study shows surface ice tends to dampen low frequency motions in the lake

 We have been facing warmer winters lately, resulting in lower surface ice %

and more seiching motions

 Question: What does this mean to our beaches?

Annual Maximum Ice Cover for Lake Erie (Ref: NOAA)
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Beach Morphology Response to Seiche
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 A stretch of shoreline (≈ 2 km) near Buffalo where seiche is energetic is

selected

 Coupled ADCIRC+SWAN model used to generate wave and surge fields for a 6-

month period in 2012

 Morphodynamics models, CSHORE and XBeach are used to study seiche effects

on shoreline
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Morphodynamics Model Input
 Water Level and Wave Boundary Condition: Coupled ADCIRC+SWAN

 Wind and Pressure Data

 Wind and Pressure Calibration/Validation

 Water Level and Wave Data

 Water Level and Wave Validation

 Sediment Characteristics
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Wind and Pressure Data

 Hourly wind data from NOAA GLCFS - Great Lakes Coastal Forecasting System

(NOAA/GLERL GLCFS)

 Hourly pressure data from The National Centers for Environmental Prediction

(NCEP) Climate Forecast System Reanalysis (CFSR)

 NOAA/GLERL GLCFS wind data and CFSR pressure data are refined to

computational grid nodes of the coupled ADCIRC+SWAN model using the natural

neighboring method.
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Locations of Water Level Stations and Wave Buoys in Lake Erie

Wind and Pressure Calibration/Validation

15



Wind and Pressure Calibration/Validation
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Wind Speed Comparison of 

October 15, 2012 Storm

Wind Direction Comparison of 

October 15, 2012 Storm



Wind and Pressure Calibration/Validation
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Pressure Comparison of 

October 15, 2012 Storm



Surge Wave Height

Water Level and Wave Validation: Validation of Surge and Wave Height
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Wave Period Wave Direction

Water Level and Wave Validation: Validation of Wave Period and Wave 

Direction
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Sediment Characteristics

 We were not able to identify detailed data on sediment characteristics for the

study area

 Median grain size (D50) estimated assuming equilibrium beach profile based on

average of five cross-sectional profiles

Locations of Cross-Sections Equilibrium Beach Profile 20



Lake Erie grain size in phi units (Thomas et al., 1976).

The phi (φ) size is related to the 

grainsize by φ = −log2 d such that 

2−φ = d (Dean and Dalrymple, 2001).

Then, 0.125mm< D50 <0.5mm 

according to Thomas et al.(1976).

 Using the Dean’s equilibrium beach profile approach: D50 = 0.11mm (Fine sand)

 This was found consistent with Thomas et al. (1976) and Dusini (2005).
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Results
 Actual (Seiche-included) Water Level

 Eroded Area: Actual(Seiche-included) Water Level

 Seiche-Free Water Level
 Seiche-Free Water Level Time-Series

 Eroded Area: Seiche-Free Water Level



Actual (Seiche-included) Water Level

 Simulated water level and wave data obtained from coupled ADCIRC+SWAN

model are enforced at the inlet boundaries of XBeach & CSHORE

Water Level & Wave Height at Offshore Boundary of P1 to P5 in XBeach & CSHORE
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Eroded Area: Actual(Seiche-included) Water Level

(P2)

(P1)

(P3)
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Eroded Area: Actual(Seiche-included) Water Level

(P4)

(P5)
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Profile
Eroded Area (m2)

Difference
XBeach CSHORE

P1 49.05 49.27 0.45%

P2 45.24 51.17 12.31%

P2 40.46 48.32 17.7%

P4 32.61 32.36 0.76%

P5 28.20 26.44 6.41%



Seiche-Free Water Level

 Seiching modes of Lake Erie are identified using the spectral analysis method

 The frequency band between the two vertical lines is associated with the

oscillations at periods ranging between 4 to 15 hours (first four seiche modes)

Power Spectral Density (PSD) of hourly water level at a) Stations 9063020 & 9063028 b) Boundary 

of Profiles P1-P5 for selected time window.

T≈4hrT≈15hr(a) (b)
T≈4hrT≈15hr
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Seiche-Free Water Level Time-Series

Seiche-Free Water Level Time-Series 27



Eroded Area: Seiche-Free Water Level

(P2)

(P1)

(P3)

28



Eroded Area: Seiche-Free Water Level

(P4)

(P5)
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Profile
Eroded Area (m2)

Difference
XBeach CSHORE

P1 47.40 48.75 2.82%

P2 44.44 50.12 12.02%

P2 40.46 47.71 16.46%

P4 31.35 31.64 0.92%

P5 27.26 25.82 5.43%
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Discussions
 Eroded Area: Actual (Seiche-Included) & Seiche-Free Water Levels

 Alongshore Variation of Beach Erosion  

 What we learned?



(P1) (P1)

(P2) (P2)

Eroded Area: Actual (Seiche-Included) & Seiche-Free Water Levels
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(P3) (P3)

(P4) (P4)

Eroded Area: Actual (Seiche-Included) & Seiche-Free Water Levels
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(P5) (P5)

Profile

CSHORE: Eroded Area (m2) XBeach: Eroded Area (m2)

Actual WL
Seiche-Free

WL
Difference Actual WL

Seiche-Free

WL
Difference

P1 49.27 48.75 1.05% 49.05 47.40 3.43%

P2 51.17 50.12 2.07% 45.24 44.44 1.78%

P2 48.32 47.71 1.25% 40.46 40.46 0.00%

P4 32.36 31.64 2.24% 32.61 31.35 3.92%

P5 26.44 25.82 2.40% 28.20 27.26 3.38%

Eroded Area: Actual (Seiche-Included) & Seiche-Free Water Levels

Actual (Seiche-included) and Seiche Free Water Level CSHORE and XBeach Simulations Results
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Total Erosion a) XBeach Actual and Seiche Free Water Level b) CSHORE Actual and Seiche Free 
Water Level 

(a) (b)
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Alongshore Variation of Beach Erosion



What we learned?

 The decrease in the ice cover may result in more energetic seiching motions and

increased erosion of beaches because:

 Low frequency oscillations in Lake Erie alters the width of surf zone by

changing the location of the wave breaking.

 Increased bottom shear stresses at low water levels can cause more erosion

of the beach.

 Seiching motions in the Eastern Lake Erie appeared to contribute to 1-2% more

erosion over a 6-month period.

 Further analyses and data collection are required
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Appendix-A: Beach Response to Low 

Frequency Lake Level Oscillations

Sensitivity Analysis of XBeach & CSHORE
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XBeach a) Grid b) Asymmetry & Skewness c) Bed Friction d) Breaker Index Sensitivity 

(b) (d)

(a) (c)
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CSHORE a) Grid b) Breaker Index c) Bed Friction Sensitivity 

(b)

(c)

(a)
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Appendix-B: Wind and Pressure Fields
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Wind Field a) NOAA/GLERL GLCFS Data b) Natural Neighboring Method 

(a) (b)
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Pressure Field a) CFSR Data b) Natural Neighboring Method 

(a) (b)

43


