NATURE-BASED COASTAL PROTECTION: WAVE DAMPING BY FLEXIBLE SALT MARSH VEGETATION
PDF

How to Cite

Veelen, T. J. van, Karunarathna, H., Bennett, W. G., Fairchild, T. P., & Reeve, D. E. (2020). NATURE-BASED COASTAL PROTECTION: WAVE DAMPING BY FLEXIBLE SALT MARSH VEGETATION. Coastal Engineering Proceedings, (36v), management.9. https://doi.org/10.9753/icce.v36v.management.9

Abstract

The ability of coastal vegetation to attenuate waves has been well established (Moller et al., 2014). Salt marshes are vegetated coastal wetlands that can act as nature- based coastal defenses. They exhibit a range of plant species, which have been shown to differ in the amount of wave damping they provide (Mullarney & Henderson, 2018). Recent studies have shown that plant flexibility is a key parameter that controls wave energy dissipation (Paul et al., 2016). Yet, no model exists that includes plant flexibility in computationally efficient manner for large-scale coastal zones. Therefore, we have developed a new model for flexible vegetation based on the key mechanisms in the wave-vegetation interaction and applied it to an estuary with diverse salt marsh vegetation.

Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/AjnFx3aFSzs
https://doi.org/10.9753/icce.v36v.management.9
PDF

References

Lesser et al. (2004): Development and validation of a three-dimensional morphological model, Coast. Eng., vol. 51, pp. 883-915.

Möller et al. (2014): Wave Attenuation over Coastal Salt Marshes under Storm Surge Conditions, Nat. Geosci., vol. 7, pp. 727-731.

Mullarney & Henderson (2018) Flows Within Marine Vegetation Canopies. In Advances in Coastal Hydraulics. WORLD SCIENTIFIC. pp. 1-46.

Paul et al. (2016): Plant Stiffness and Biomass as Drivers for Drag Forces under Extreme Wave Loading: A Flume Study on Mimics, Coast. Eng., vol. 117, pp. 70-78

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.