RANS SIMULATION OF BREAKER BAR DEVELOPMENT USING A STABILIZED TURBULENCE MODEL
PDF

How to Cite

Larsen, B. E., & Fuhrman, D. R. (2020). RANS SIMULATION OF BREAKER BAR DEVELOPMENT USING A STABILIZED TURBULENCE MODEL. Coastal Engineering Proceedings, (36v), sediment.15. https://doi.org/10.9753/icce.v36v.sediment.15

Abstract

The results demonstrate the significant advantages of utilizing formally stabilized turbulence closure models in accurately predicting the surf zone dynamics, sediment transport, and breaker bar morphology in the shoaling region and in the outer surf zone using RANS models. Simulated evolution using a stabilized turbulence model is demonstrated to predict cross-shore breaker bar position, growth and evolution. This is in contrast to results using (otherwise identical) standard turbulence closure, which tend to flush the bar further offshore. Further improvements are still needed to increase hydrodynamic accuracy, hence sediment transport and morphological evolution, in the inner surf zone.

Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/R_sm_06qQGM
https://doi.org/10.9753/icce.v36v.sediment.15
PDF

References

Baykal, C., Sumer, B. M., Fuhrman, D. R., Jacobsen, N. G., Fredsoe, J., 2015. Numerical investigation of flow and scour around a vertical circular cylinder. Phil. Trans. Roy. Soc. A 373, article no. 20140104.

Baykal, C., Sumer, B. M., Fuhrman, D. R., Jacobsen, N. G., Fredsoe, J., 2017. Numerical simulation of scour and back lling processes around a circular pile in waves. Coast. Eng. 122, 87-107.

Bayraktar, D., Ahmad, J., Larsen, B. E., Carstensen, S., Fuhrman, D. R., 2016. Experimental and numerical study of wave-induced backfilling beneath submarine pipelines. Coast. Eng. 118, 63-75.

Bradford, S. F., 2000. Numerical simulation of surf zone dynamics. J. Waterw. Port C-ASCE 126 (1), 1-13.

Brown, S. A., Greaves, D. M., Magar, V., Conley, D. C., 2016. Evaluation of turbulence closure models under spilling and plunging breakers in the surf zone. Coast. Eng. 114, 177-193.

Fuhrman, D. R., Baykal, C., Sumer, B. M., Jacobsen, N. G., Fredsoe, J., 2014. Numerical simulation of wave-induced scour and backfilling processes beneath submarine pipelines. Coast. Eng. 94, 10-22.

Jacobsen, N. G., Fredsoe, J., 2014. Formation and development of a breaker bar under regular waves. part 2: Sediment transport and morphology. Coast. Eng. 88, 55-68.

Jacobsen, N. G., Fredsoe, J., Jensen, J. H., 2014. Formation and development of a breaker bar under regular waves. Part 1: Model description and hydrodynamics. Coast. Eng. 88, 182-193.

Larsen, B. E., Arboll, L. K., Frigaard, S., Carstensen, S., Fuhrman, D. R., 2018. Experimental study of tsunami-induced scour around a monopile foundation. Coast. Eng. 138, 9-21.

Larsen, B. E., Fuhrman, D. R., 2018. On the over-production of turbulence beneath surface waves in Reynolds-averaged Navier-Stokes models. J. Fluid Mech. 853, 419-460.

Larsen, B. E., Fuhrman, D. R., Sumer, B. M., 2016. Simulation of wave-plus-current scour beneath submarine pipelines. J. Waterw. Port C-ASCE 142 (5), article no. 04016003.

Launder, B. E., Sharma, B. I., 1974. Application of the energy-dissipation model or turbulence to the calculation of flow near a spinning disc. Lett. Heat Mass Transfer 1 (2), 131-7, 131-137.

Lin, P. Z., Liu, P. L. F., 1998. A numerical study of breaking waves in the surf zone. J. Fluid Mech. 359, 239-264.

Mayer, S., Madsen, P. A., 2000. Simulations of breaking waves in the surf zone using a Navier-Stokes solver. In: Proc. 27th Int. Conf. Coast. Eng. Sydney, Australia, pp. 928-941.

Menter, F. R., 1994. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32 (8), 1598-1605.

van der Zanden, J., van der A, D. A., Caceres, I., Larsen, B. E., Fromant, G., Petrotta, C., Scandura, P., Li, M., 2019. Spatial and temporal distributions of turbulence under bichromatic breaking waves. Coast. Eng. 146, 65-80.

van der Zanden, J., van der A, D. A., Hurther, D., Caceres, I., O'Donoghue, T., Hulscher, S. J. M. H., Ribberink, J. S., 2017. Bedload and suspended load contributions to breaker bar morphodynamics. Coast. Eng. 129, 74-92.

van der Zanden, J., van der A, D. A., Hurther, D., Caceres, I., O'Donoghue, T., Ribberink, J. S., 2016. Near-bed hydrodynamics and turbulence below a large- scale plunging breaking wave over a mobile barred bed pro le. J. Geophys. Res. 121 (8), 6482-6506.

Wilcox, D. C., 1988. Reassessment of the scale-determining equation for advanced turbulence models. AIAA J. 26 (11), 1299-1310.

Wilcox, D. C., 2006. Turbulence Modeling for CFD, 3rd Edition. DCW Industries, Inc., La Canada, California.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.