Abstract
New South Wales (NSW) often experiences periods of coastal inundation and estuarine flooding. One of the causal mechanisms of these episodes are coastal shelf waves (CSW), generated by synoptic disturbances (Church et al., 2006). CSWs in Australia often result from wind stress, mostly along mid-latitudes (e.g., the Great Australian Bight) and propagate anticlockwise (Woodham et al., 2013). However, there are no tools available for identifying and characterising CSWs and as such there is very little information on the magnitude, frequency, duration, and spatiotemporal variability. This paper aims to: (1) develop a method to identify and track CSWs using the existing ocean tide gauge network, (2) identify patterns in the frequency, duration, and magnitude of CSW, and (3) assess the factors that affect the frequency, duration, and magnitude of CSWs along the NSW coast.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/oigzYIKFBmA
References
Church, Hunter, McInnes, & White (2006). Sea-level rise around the Australian coastline and the changing frequency of extreme sea-level events. Australian Meteorological Magazine, 55, 253–260.
Woodham, Brassington, Robertson & Alves (2013). Propagation characteristics of coastally trapped waves on the Australian Continental Shelf. Journal of Geophysical Research: Oceans, 118(9), 4461–4473.
Authors retain copyright and grant the Proceedings right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Proceedings.