NUMERICAL COMPUTATION OF INFRAGRAVITY WAVE DYNAMICS AND VELOCITY PROFILES USING A FULLY NONLINEAR BOUSSINESQ MODEL
Proceedings of the 32nd International Conference
PDF

Keywords

boussinesq
infragravity
velocity profiles
SERR1D

How to Cite

Cienfuegos, R., Duarte, L., Suarez, L., & Catalán, P. A. (2011). NUMERICAL COMPUTATION OF INFRAGRAVITY WAVE DYNAMICS AND VELOCITY PROFILES USING A FULLY NONLINEAR BOUSSINESQ MODEL. Coastal Engineering Proceedings, 1(32), currents.48. https://doi.org/10.9753/icce.v32.currents.48

Abstract

We present experimental and numerical analysis of nonlinear processes responsible for generating infragravity waves in the nearshore. We provide new experimental data on random wave propagation and associated velocity profiles in the shoaling and surf zones of a very mild slope beach. We analyze low frequency wave generation mechanisms and dynamics along the beach and examine in detail the ability of the fully nonlinear Boussinesq- type model SERR1D (Cienfuegos et al., 2010) to reproduce the complex dynamics of high frequency wave propagation and energy transfer mechanisms that enhance infragravity wave generation in the laboratory.
https://doi.org/10.9753/icce.v32.currents.48
PDF

References

T.E. Baldock. Long wave generation by the shoaling and breaking of transient wave groups on a beach. Proc. R. Soc. London, A, 462: 1853-1876, 2006. http://dx.doi.org/10.1098/rspa.2005.1642

F. Biésel. Équations générales au second ordre de la houle irrégulière. Houille Blanche, pages 372-376, 1952.http://dx.doi.org/10.1051/lhb/1952033

R. Cienfuegos, E. Barthélemy, and P. Bonneton. A fourth order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations. Part I : model development and analysis. Int. J. Num. Meth. Fluids, 51 (11): 1217-1253, 2006. http://dx.doi.org/10.1002/fld.1141

R. Cienfuegos, E. Barthélemy, and P. Bonneton. A fourth order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations. Part II : boundary conditions and validation. Int. J. Num. Meth. Fluids, 53 (9): 1423-1455, 2007.http://dx.doi.org/10.1002/fld.1359

R. Cienfuegos, E. Barthélemy, and P. Bonneton. A wave-breaking model for Boussinesq-type equations including roller effects in the mass conservation equation. J. Waterw. Port Coastal Oc. Eng., 136: 10-26, 2010.

T. G. Drake and J. Calantoni. Discrete particle model for sheet flow sediment transport in the nearshore. J. Geophys. Res., 106 (15): 19859-19868, 2001.http://dx.doi.org/10.1029/2000JC000611

S. Hibberd and D.H. Peregrine. Surf and run-up on a beach: a uniform bore. J. Fluid Mech., 95: 323-345, 1979.http://dx.doi.org/10.1017/S002211207900149X

F. Hoefel and S. Elgar. Wave-induced sediment transport and sandbar migration. Science, 299: 1885, 2003. PMid:12649479 http://dx.doi.org/10.1126/science.1081448

T.T. Janssen, J.A. Battjes, and A.R. Van Dongeren. Long waves induced by short-wave groups over a sloping bottom. J. Geophys. Res., 108 (C8): 3252, 2003. 10.1029/2002JC001515.http://dx.doi.org/10.1029/2002JC001515

T.B. Johannessen and C. Swan. On the nonlinear dynamics of wave groups produced by the focusing of surface-water waves. Proc. Roy. Soc. London, A (459): 1021-152, 2003.

H. Karunarathna, A. Chadwick, and J. Lawrence. Numerical experiments of swash oscillations on steep and gentle beaches. Coastal Eng., 52: 497-511, 2005.http://dx.doi.org/10.1016/j.coastaleng.2005.02.003

J.H. List. A model for the generation of two dimensional surf beat. J. Geophys. Res., 97: 5623-5635, 1992. http://dx.doi.org/10.1029/91JC03147

M.S. Longuet-Higgins and R.W. Stewart. Radiation stress and mass transport in gravity waves, with application to 'surf beat'. J. Fluid Mech., 13: 481-504, 1962. http://dx.doi.org/10.1017/S0022112062000877

P.J. Lynett, T.R. Wu, and P.L.F. Liu. Modeling wave runup with depth-integrated equations. Coastal Eng., 46: 89-107, 2002. http://dx.doi.org/10.1016/S0378-3839(02)00043-1

P.A. Madsen, O.R. Sørensen, and H.A. Schäffer. Surf zone dynamics simulated by a Boussinesq-type model : Part I. Model description and cross-shore motion of regular waves. Coastal Eng., 32: 255-288, 1997. http://dx.doi.org/10.1016/S0378-3839(97)00028-8

E. Mignot and R. Cienfuegos. On the application of a Boussinesq model to river flows including shocks. Coastal Eng., 56: 23-31, 2009. http://dx.doi.org/10.1016/j.coastaleng.2008.06.007

K. Nadaoka, M. Hino, and Y. Koyano. Structure of turbulent flow field under breaking waves in the surf zone. J. Fluid Mech., 204: 359-387, 1989. http://dx.doi.org/10.1017/S0022112089001783

H.A. Schäffer. Second-order wavemaker theory for irregular waves. Ocean Eng., 23: 47-88, 1996.http://dx.doi.org/10.1016/0029-8018(95)00013-B

G. Symonds, A.J. Huntley, and A.J. Bowen. Two-dimensional surf-beat: long-wave generation by a time-varying breakpoint. J. Geophys. Res., 87: 492-498, 1982.http://dx.doi.org/10.1029/JC087iC01p00492

Authors retain copyright and grant the Proceedings right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Proceedings.