FINITE ELEMENT MODEL OF TWO LAYER COASTAL CIRCULATION
PDF

Keywords

finite element
circulation
two dimensional circulation

How to Cite

Wang, J. D., & Connor, J. J. (1974). FINITE ELEMENT MODEL OF TWO LAYER COASTAL CIRCULATION. Coastal Engineering Proceedings, 1(14), 141. https://doi.org/10.9753/icce.v14.141

Abstract

A set of "averaged partial differential equations for the circulation in a two layered coastal water is established by assuming each layer to be vertically homogeneous and by performing a vertical integration over the layer thicknesses. Since the phenomena to be investigated typically consist of long waves such as a tidal wave, the hydrostatic pressure assumption is also introduced. The finite element method is employed to transform the partial differential equations to a discrete system of ordinary differential equations which are solved using an implicit time stepping method similar to the trapezoidal rule, but with the variables (elevation and flows) staggered in time. A linear stability analysis shows the initial value problem to be unconditionally stable. In practice, instability due to boundary conditions and non-linearity sets in. Comparisons between computed and analytical solutions for simple cases give good agreement. The tidal excitation of Massachusetts Bay, represented as a rectangular basin with opening on one side is presented as an illustrative example.
https://doi.org/10.9753/icce.v14.141
PDF
Authors retain copyright and grant the Proceedings right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Proceedings.