MODELLING OVERWASH AND INFILTRATION ON GRAVEL BARRIERS
ICCE 2012 Cover Image
PDF

Keywords

gravel
barrier
overwash
infiltration
groundwater
modeling

How to Cite

McCall, R. T., Masselink, G., Roelvink, D., Russell, P., Davidson, M., & Poate, T. (2012). MODELLING OVERWASH AND INFILTRATION ON GRAVEL BARRIERS. Coastal Engineering Proceedings, 1(33), currents.34. https://doi.org/10.9753/icce.v33.currents.34

Abstract

A quasi-3D process-based and time dependent groundwater model is developed and coupled to a hydrodynamic storm impact model to simulate the effect of infiltration on overwash on a gravel barrier. The coupled model is shown to accurately reproduce groundwater variations, runup properties and overwash time series measured in the gravel barrier during a large-scale physical model experiment. The coupled model is applied to study the influence of hydraulic conductivity on overwash volumes. It is shown that modeled overwash volumes are significantly affected by infiltration for hydraulic conductivity values greater than 0.01ms-1.
https://doi.org/10.9753/icce.v33.currents.34
PDF

References

Austin, M.J.; Masselink, G.; McCall, R.T. and T.G. Poate. Submitted. Groundwater dynamics in coastal gravel barriers backed by freshwater lagoons and the potential for saline intrusion: two cases from the UK.

Bagnold, R.A. 1940. Beach formation by waves; some model-experiments in a wave tank. Journal of the ICE, 15, 27-52.http://dx.doi.org/10.1680/ijoti.1940.14279">http://dx.doi.org/10.1680/ijoti.1940.14279

Bradbury, A. 2000. Predicting breaching of shingle barrier beaches-recent advances to aid beach management. Proc. 35th Annual MAFF Conference of River and Coastal Engineers.

Buscombe, D. and G. Masselink. 2006. Concepts in gravel beach dynamics. Earth-Science Reviews, 79, 33-52.http://dx.doi.org/10.1016/j.earscirev.2006.06.003">http://dx.doi.org/10.1016/j.earscirev.2006.06.003

CIRIA; CUR and CETMEF. 2007. The Rock Manual. The use of rock in hydraulic engineering (2nd edition), C683, CIRIA, London.

Coduto, D.P. 1999. Geotechnical Engineering Principles and Practices, Prentice-Hall, Englewood Cliffs, NJ.

Darcy, H. 1856. Les Fontaines Publiques de la Ville de Dijon, Technical report, Dalmont, Paris.

Ergun, S. 1952. Fluid flow through packed columns. Chemical Engineering Progress, 48, 88-94.

Fetter, C.W. 1988. Applied Hydrology. Merrill Publishing Company, p. 488.

Halford, K. 2000. Simulation and interpretation of borehole flowmeter results under laminar and turbulent flow conditions. Proc. 7th International Symposium on Logging for Minerals and Geotechnical Applications, Golden, Colorado. 157-168.

Harbaugh, A. 2005. MODFLOW-2005, the U.S. Geological Survey modular ground-water model - the Ground-Water Flow Process. U.S. Geological Survey Techniques and Methods. U.S. Geological Survey

Jamal, M.H., Simmonds, D.J., Magar, V. and S. Pan. 2010. Modelling infiltration on gravel beaches with an XBeach variant. Proc. 32nd International Conference on Coastal Engineering, Shanghai, China.

Jennings, R. and J. Shulmeister. 2002. A field based classification scheme for gravel beaches. Marine Geology, 186, 211-228.http://dx.doi.org/10.1016/S0025-3227(02)00314-6">http://dx.doi.org/10.1016/S0025-3227(02)00314-6

Kuniansky, E.; Halford, K. and W. Shoemaker. 2008. Permeameter Data Verify New Turbulence Process for MODFLOW. Ground Water. 46(5), 768-771.http://dx.doi.org/10.1111/j.1745-6584.2008.00458.x">http://dx.doi.org/10.1111/j.1745-6584.2008.00458.x

PMid:18459958

Mason, T. and T.T. Coates. 2001. Sediment Transport Processes on Mixed Beaches: A Review for Shoreline Management. Journal of Coastal Research. 17(3), 645-657.

McCall, R.T., Van Thiel de Vries, J.S.M., Plant, N., Van Dongeren, A.R., Roelvink, J.A., Thompson, D., and A.J.H.M. Reniers. 2010. Two-dimensional time dependent hurricane overwash and erosion modeling at Santa Rosa Island. Coastal Engineering. 57, 668-683.http://dx.doi.org/10.1016/j.coastaleng.2010.02.006">http://dx.doi.org/10.1016/j.coastaleng.2010.02.006

Moses, C.A. and R.B.G. Williams. 2008. Artificial beach recharge: the South East England experience. Zeitschrift fur Geomorphologie. Supplementband 52, 3, 107-123.

Orford, J.D. 1977. A proposed mechanism for storm beach sedimentation. Earth Surface Processes. 2: 381-400.http://dx.doi.org/10.1002/esp.3290020409">http://dx.doi.org/10.1002/esp.3290020409

Packwood, A. 1983. The influence of beach porosity on wave uprush and backwash. Coastal Engineering. 7(1), 29-40.http://dx.doi.org/10.1016/0378-3839(83)90025-X">http://dx.doi.org/10.1016/0378-3839(83)90025-X

Pedrozo-Acuña, A., Simmonds, D., Otta, A. and A. Chadwick. 2006. On the cross-shore profile change of gravel beaches. Coastal Engineering. 53(4), 335-347.http://dx.doi.org/10.1016/j.coastaleng.2005.10.019">http://dx.doi.org/10.1016/j.coastaleng.2005.10.019

Powell, K.A. 1990. Predicting Short Term Profile response for shingle beaches. Report SR 219, HR Wallingford, Oxfordshire, UK.

Roelvink, J.A., Reniers, A.J.H.M., Van Dongeren, A.R., Van Thiel de Vries, J.S.M., McCall, R.T. and J. Lescinski. 2009. Modeling storm impacts on beaches, dunes and barrier islands. Coastal Engineering. 56, 1133-1152.http://dx.doi.org/10.1016/j.coastaleng.2009.08.006">http://dx.doi.org/10.1016/j.coastaleng.2009.08.006

Shoemaker, W., Kuniansky, E., Birk, S., Bauer, S. and E. Swain. 2008. Documentation of a Conduit Flow Process (CFP) for MODFLOW-2005. U.S. Geological Survey Techniques and Methods, chapter A24, pp. 50.

Smit, P., Stelling, G., Roelvink, J.A., Van Thiel de Vries, J.S.M., McCall, R.T., Van Dongeren, A.P., Zwinkels, C. and R. Jacobs. 2010, XBeach: Non-hydrostatic model: Validation, verification and model description. Technical report, Delft University of Technology.

Turner, I.L., Russell, P.E. and T. Butt. 2008. Measurement of wave-by-wave bed-levels in the swash zone. Coastal Engineering. 55(12), 1237-1242.http://dx.doi.org/10.1016/j.coastaleng.2008.09.009">http://dx.doi.org/10.1016/j.coastaleng.2008.09.009

Turner, I.L. and G. Masselink. 2012. Coastal gravel barrier hydrology - Observations from a prototypescale laboratory experiment (BARDEX). Coastal Engineering. 63, 13-22.http://dx.doi.org/10.1016/j.coastaleng.2011.12.008">http://dx.doi.org/10.1016/j.coastaleng.2011.12.008

Ward, J. 1964. Turbulent flow in porous media. Journal of Hydraulic Division (ASCE) 90, 1-12.

Williams, J., Buscombe, D., Masselink, G., Turner, I.L. and C. Swinkels. 2012a, Barrier dynamics experiment (BARDEX): Aims, design and procedures. Coastal Engineering. 63(0), 3-12.http://dx.doi.org/10.1016/j.coastaleng.2011.12.009">http://dx.doi.org/10.1016/j.coastaleng.2011.12.009

Williams, J., Ruiz de Alegría-Arzaburu, A., McCall, R.T. and Van Dongeren, A.P. 2012b. Modelling gravel barrier profile response to combined waves and tides using XBeach: Laboratory and field results. Coastal Engineering. 63, 62-80.http://dx.doi.org/10.1016/j.coastaleng.2011.12.010">http://dx.doi.org/10.1016/j.coastaleng.2011.12.010

Zijlema, M., Stelling, G. and P. Smit. 2011. SWASH: An operational public domain code for simulating wave fields and rapidly varied flows in coastal waters. Coastal Engineering. 58(10), 992-1012.http://dx.doi.org/10.1016/j.coastaleng.2011.05.015">http://dx.doi.org/10.1016/j.coastaleng.2011.05.015

Authors retain copyright and grant the Proceedings right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Proceedings.