GENERATION AND SPATIAL PROPAGATION OF LANDSLIDE GENERATED IMPULSE WAVES
ICCE 2016 Cover Image
PDF

Keywords

Impulse wave
physical modelling
subaerial landslide
wave height decay
wave propagation

How to Cite

Evers, F. M., & Hager, W. H. (2017). GENERATION AND SPATIAL PROPAGATION OF LANDSLIDE GENERATED IMPULSE WAVES. Coastal Engineering Proceedings, 1(35), currents.13. https://doi.org/10.9753/icce.v35.currents.13

Abstract

Large subaerial mass wasting into water may generate large waves along coast lines and in bays. Hazard assessment of such an events is based on the decay rate of these impulse waves along their propagation path to populated areas and infrastructure along the shoreline. The spatial propagation processes of impulse waves generated by deformable slides was investigated in a wave basin. A videometric measurement approach allowed for a detailed tracking of the free water surface and key wave characteristics during the experimental runs including the wave height. Based on selected tests, the slide width effect on spatial wave propagation is discussed.
https://doi.org/10.9753/icce.v35.currents.13
PDF

References

Bornhold, B.D., J.R. Harper, D. McLaren, and R.E. Thomson. 2007. Destruction of the first nations village of Kwalate by a rock avalanche†generated tsunami. Atmos. Ocean, 45(2), 123-128. DOI: 10.3137/ao.450205

Dahl-Jensen, T., L.M. Larsen, S.A.S. Pedersen, J. Pedersen, H.F. Jepsen, G.K. Pedersen, T. Nielsen, A.K. Pedersen, F. von Platen-Hallermund, and W. Wenig. 2004. Landslide and tsunami 21 November 2000 in Paatuut, West Greenland. Natural Hazards, 31 (1), 277-287. DOI: 10.1023/B:NHAZ.0000020264.70048.95

Evers, F.M., and W.H. Hager. 2015a. Impulse wave generation: Comparison of free granular with mesh-packed slides. J. Mar. Sci. Eng., 3, 100-110. DOI: 10.3390/jmse3010100

Evers, F.M., and W.H. Hager. 2015b. Videometric water surface tracking: towards investigating spatial impulse waves. Proc. 36th IAHR Congress, The Hague.

Evers, F.M., and W.H. Hager. 2016. Spatial impulse waves: Wave height decay experiments at laboratory scale. Landslides, 13(6), 1395-1403. DOI: 10.1007/s10346-016-0719-1

Heller, V., W.H. Hager, and H.-E. Minor. 2009. Landslide generated impulse waves in reservoirs: Basics and computation. VAW-Mitteilung 211, H.-E. Minor, ed. ETH Zurich, Zurich.

Heller, V., and W.H. Hager. 2010. Impulse product parameter in landslide generated impulse waves. J. Waterway, Port, Coastal, Ocean Eng., 136(3), 145-155. DOI: 10.1061/(ASCE)WW.1943-5460.0000037

Heller, V., and J. Spinneken. 2015. On the effect of the water body geometry on landslide-tsunamis: Physical insight from laboratory tests and 2D to 3D wave parameter transformation. Coast. Eng., 104, 113-134. DOI: 10.1016/j.coastaleng.2015.06.006

Miller, D.J. 1960. The Alaska earthquake of July 10, 1958: giant wave in Lituya Bay. B. Seismol. Soc. Am. 50(2), 253-266.

Mohammed, F., and H.M. Fritz. 2012. Physical modeling of tsunamis generated by three-dimensional deformable granular landslides. J. Geophys. Res., 117, C11015. DOI: 10.1029/2011JC007850

Panizzo, A., P. De Girolamo, and A. Petaccia. 2005. Forecasting impulse waves generated by subaerial landslides. J. Geophys. Res., 110, C12025. DOI: 10.1029/2004JC002778

Sepúlveda, S.A., A. Serey, M. Lara, A. Pavez, and S. Rebolledo. 2010. Landslides induced by the April 2007 Aysén fjord earthquake, Chilean Patagonia. Landslides, 7(4), 483-492. DOI: 10.1007/s10346-010-0203-2

Slingerland, R.L., and B. Voight. 1979. Occurrences, properties, and predictive models of landslide-generated water waves. Developments in Geotechnical Engineering 14B, Rockslides and avalanches 2, Engineering Sites, B. Voight, ed. Elsevier Scientific Publishing, Amsterdam, 317-397.

Authors retain copyright and grant the Proceedings right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Proceedings.