A MODEL IN FREQUENCY DOMAIN FOR TRANSFORMATION OF FULLY DISPERSIVE NONLINEAR WAVES

  • Samira Ardani
  • James M. Kaihatu

Abstract

In this study, mathematical derivation and numerical verification of a wave transformation model in frequency domain is discussed. This wave model is fully dispersive and nonlinear; and is derived based on the WKB assumptions. Transforming the problem into the frequency domain and using multiple scale analysis in space and perturbation theory, the model is expanded up to second order in wave steepness. This fully dispersive nonlinear wave model is a set of evolution equations which explicitly contains quadratic near-resonant interactions. The comparison between the presented model, the existing fully dispersive model and a nearshore model with different set of laboratory and field data shows that the presented model provides significant improvements particularly at higher frequencies.

References

Y. Agnon and A. Sheremet. Stochastic nonlinear shoaling of directional spectra. Journal of Fluid Mechanics, 345:79-99, 1997.

Y. Agnon, A. Sheremet, J. Gonsalves, and M. Stiassnie. Nonlinear evolution of a unidirectional shoaling wave field. Coastal Engineering, 20(1):29-58, 1993.

S. Ardani. A Model for Transformation of Fully Dispersive Nonlinear Waves. PhD thesis, 2016.

T. B. Benjamin, J. L. Bona, and J. J. Mahony. Model equations for long waves in nonlinear dispersive systems. Phil.Trans.R.Soc.Lond.A, 272(1220):47-78, 1972.

D. Benney. Non-linear gravity wave interactions. Journal of Fluid Mechanics, 14(04):577-584, 1962.

W. A. Birkemeier and E. B. Thornton. The duck94 nearshore field experiment. In Coastal Dynamics 1994; pages 815-821:ASCE; 1994:

B. Boczar-Karakiewicz, J. Bona, and D. Cohen. Interaction of shallow-water waves and bottom topography. 1986.

B. Boczar-Karakiewicz, J. Bona, and D. Cohen. Interaction of shallow-water waves and bottom topography. Institute for Mathematics and Its Applications, 4:131, 1987.

N. Booij, R. Ris, and L. H. Holthuijsen. A third-generation wave model for coastal regions: 1. model description and validation. Journal of geophysical research: Oceans, 104(C4):7649-7666, 1999.

J. Boussinesq. Theorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. Journal de Mathematiques Pures et Appliques, pages 55-108, 1872.

G. D. Bowen and J. T. Kirby. Shoaling and breaking random waves on a 1:35 laboratory beach. Technical report, 1994.

H. Bredmose, H. Schaffer, and P. A. Madsen. Boussinesq evolution equations: Numerical eciency, breaking and amplitude dispersion. Coastal Engineering, 51(11):1117-1142, 2004.

P. Bryant. Stability of periodic waves in shallow water. Journal of Fluid Mechanics, 66(01):81-96, 1974. P. J. Bryant. Periodic waves in shallow water. Journal of fluid mechanics, 59:625-644, 1973.

G. Chapalain, R. Cointe, and A. Temperville. Observed and modeled resonantly interacting progressive water-waves. Coastal Engineering, 16(3):267-300, 2 1992.

Y. Chen and P. L.-F. Liu. Modified boussinesq equations and associated parabolic models for water wave propagation. Journal of Fluid Mechanics, 288:351-381, 1995.

V. H. Chu and C. C. Mei. On slowly-varying stokes waves. Journal of Fluid Mechanics, 41(04):873-887, 1970.

Y. Eldeberky. Nonlinear effects in gravity waves propagating in shallow water. Coastal Engineering Journal, 54(04), 2012.

Y. Eldeberky and J. A. Battjes. Spectral modeling of wave breaking: Application to boussinesq equations. Journal of Geophysical Research: Oceans, 101(C1):1253-1264, 1996.

Y. Eldeberky and P. A. Madsen. Deterministic and stochastic evolution equations for fully dispersive and weakly nonlinear waves. Coastal Engineering, 38(1):1-24, 1999.

M. H. Freilich and R. T. Guza. Nonlinear effects on shoaling surface gravity waves. Philosophical Transactions of the Royal Society of London (Series) A: Mathematical and Physical Sc, 311(1515):1-41, 1984.

T. Janssen, T. Herbers, and J. Battjes. Generalized evolution equations for nonlinear surface gravity waves over two-dimensional topography. Journal of Fluid Mechanics, 552:393-418, 2006.

B. Kadomtsev and V. Petviashvili. On the stability of solitary waves in weakly dispersing media. In Sov. Phys. Dokl, volume 15, pages 539-541, 1970.

J. M. Kaihatu. Improvement of parabolic nonlinear dispersive wave model. Journal of waterway, port, coastal, and ocean engineering, 127(2):113-121, 2001.

J. M. Kaihatu. Frequency domain wave models in the nearshore and surf zones. Amsterdam: Elsevier, 2003.

J. M. Kaihatu and J. T. Kirby. Nonlinear transformation of waves in finite water depth. Physics of Fluids, 7(8):1903-1914, 1995.

J. M. Kaihatu and J. T. Kirby. Effects of mode truncation and dissipation on predictions of higher order statistics. Coastal Engineering Proceedings, 1(25), 1996.

J. M. Kaihatu and J. T. Kirby. Two-dimensional parabolic modeling of extended boussinesq equations. Journal of waterway, port, coastal, and ocean engineering, 124(2):57-67, 1998.

J. M. Kaihatu, J. Veeramony, K. L. Edwards, and J. T. Kirby. Asymptotic behavior of frequency and wave number spectra of nearshore shoaling and breaking waves. Journal of Geophysical Research: Oceans (1978Ãâ‚:2012); 112(C6); 2007:

J. M. Kaihatu, S. Ardani, J. T. Goertz, A. Venkattaramanan, and A. Sheremet. Wave dissipation mechanisms in spectral phase-resolved nonlinear wave models. Advances in Coastal Hydraulics, page 235, 2018.

J. B. Keller. Resonantly interacting water waves. Journal of Fluid Mechanics, 191:529-534, 1988.

J. T. Kirby and J. M. Kaihatu. Structure of frequency domain models for random wave breaking, 1996.

J. T. Kirby, J. M. Kaihatu, and H. Mase. Shoaling and breaking of random wave trains: spectral approaches. In Engineering Mechanics, pages 71-74. ASCE, 1992.

D. J. Korteweg and G. D. Vries. Xli. on the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 39(240):422-443, 1895.

P. L. F. Liu and M. W. Dingemans. Derivation of the third order evolution equations for weakly nonlinear water waves propagating over uneven bottoms. Wave motion, 11:41-64, 1989.

P. L.-F. Liu and T.-K. Tsay. Refraction-diffraction model for weakly nonlinear water waves. Journal of Fluid Mechanics, 141:265-274, 1984.

P. L.-F. Liu, S. B. Yoon, and J. T. Kirby. Nonlinear refraction-diffraction of waves in shallow water. Journal of Fluid Mechanics, 153:185-201, 1985.

P. A. Madsen and Y. Eldeberky. A new formulation of deterministic and stochastic evolution equations for three-wave interactions involving fully dispersive waves. Coastal Engineering Proceedings, 1(26), 1998.

P. A. Madsen and O. R. Sorensen. A new form of the boussinesq equations with improved linear dispersion characteristics. part 2. a slowly-varying bathymetry. Coastal Engineering, 18(3):183-204, 1992.

P. A. Madsen, R. Murray, and O. R. Sorensen. A new form of the boussinesq equations with improved linear dispersion characteristics. Coastal Engineering, 15(4):371-388, 1991.

H. Mase and J. T. Kirby. Hybrid frequency-domain kdv equation for random wave transformation. Coastal Engineering Proceedings, 1(23), 1992.

C. Mei and B. L. Mehaute. Note on the equations of long waves over an uneven bottom. Journal of Geophysical Research, 71(2):393-400, 1966.

C. C. Mei and U. Unluata. Harmonic generation in shallow water waves. Waves on Beaches and Resulting Sediment Transport, pages 181-202, 1972.

O. Nwogu. Alternative form of boussinesq equations for nearshore wave propagation. Journal of waterway, port, coastal, and ocean engineering, 119(6):618-638, 1993.

D. Peregrine. Long waves on a beach. Journal of Fluid Mechanics, 27(04):815-827, 1967.

O. Phillips. The dynamics of the upper ocean cambridge university press. New York, 1977.

A. Radder. On the parabolic equation method for water-wave propagation. Journal of Fluid Mechanics, 95 (1):159-176, 1979.

J. Roelvink and M. Stive. Bar-generating cross-shore flow mechanisms on a beach. Journal of Geophysical Research: Oceans (1978Ãâ‚:2012); 94(C4) : 4785 ô€€€ ô€€€4800; 1989:

R. Smith and T. Sprinks. Scattering of surface waves by a conical island. Journal of Fluid Mechanics, 72 (02):373-384, 1975.

K. D. Suh, R. A. Dalrymple, and J. T. Kirby. An angular spectrum model for propagation of stokes waves. Journal of Fluid Mechanics, 221:205-232, 1990.

E. B. Thornton and R. Guza. Transformation of wave height distribution. Journal of Geophysical Research: Oceans (1978-2012), 88(C10):5925-5938, 1983.

H. L. Tolman, M. L. Banner, and J. M. Kaihatu. The nopp operational wave model improvement project. Ocean Modelling, 70(0):2-10, 10 2013.

Published
2018-12-30
How to Cite
Ardani, S., & Kaihatu, J. M. (2018). A MODEL IN FREQUENCY DOMAIN FOR TRANSFORMATION OF FULLY DISPERSIVE NONLINEAR WAVES. Coastal Engineering Proceedings, 1(36), papers.60. https://doi.org/10.9753/icce.v36.papers.60