WAVE MODELLING IN A COMPLEX ESTUARY: STUDY IN PREPARATION OF FIELD MEASUREMENT CAMPAIGN EEMS-DOLLARD ESTUARY

  • Patrick Oosterlo
  • Jentsje W. van der Meer
  • Bas Hofland
  • Gerbrant van Vledder

Abstract

This paper considers the Eems-Dollard estuary in the north of the Netherlands, which is part of the shallow shelf sea the Wadden Sea. This estuary is a highly complex area with tidal flats and deep channels and is characterised by an offshore directed wind, posing a challenge to wave prediction models. As little measurements are available, a measurement campaign is set up to provide field data for verifying and improving these wave models. The paper presents the locations that are most suited for wave measurements in the estuary, insight in the performance of the phase-averaged numerical wave model SWAN, and insight in the processes that play a role in the area around the corner of the Eemshaven. Furthermore, it presents insight into the reliability and applicability of SWAN in this highly complex area. An analysis of propagation effects is performed, as well as a comparison between the SWAN version as used for the Dutch dike safety assessment and the newest version, used for development, which includes the state of the art parameterisations of the physics. Furthermore, modelling is done for a schematised version of the area around the corner of the Eemshaven, considering several different model settings. Large differences occur in the results between the two SWAN versions. These differences are studied in more detail, and the causes of these differences are identified.

References

Adema, J., Geleynse, N., & Telenta, B. (2014). Een rekenexperiment voor de Waddenzee, de storm van 5 & 6 december 2013. Technical report C03041.001941.0100. Arcadis, Zwolle.

Adema, J., Geleynse, N., & Telenta, B. (2015). Een Rekenexperiment voor de Waddenzee, 4 stormen van 2006, 2007, 2013 en 2014. Technical report C03041.001941.0200. Arcadis, Zwolle.

Battjes, J. A., & Janssen, J. P. F. M. (1978). Energy loss and set-up due to breaking of random waves. In Coastal Engineering Proceedings (pp. 569-587). Retrieved from http://journals.tdl.org/icce/index.php/icce/article/view/3294

Booij, N., Ris, R. C., & Holthuijsen, L. H. (1999). A third-generation wave model for coastal regions: 1. Model description and validation. Journal of Geophysical Research: Oceans, 104(C4), 7649-7666. http://doi.org/10.1029/98JC02622

Dietrich, J. C., Zijlema, M., Allier, P.-E., Holthuijsen, L. H., Booij, N., Meixner, J. D., … Naimaster, A. (2013). Limiters for spectral propagation velocities in SWAN. Ocean Modelling, 70, 85-102.

Dusseljee, D. W., Klopman, G., Van Vledder, G. P., & Riezebos, H. J. (2014). Impact of harbor navigation channels on waves: A numerical modelling guideline. In Coastal Engineering Proceedings (pp. 1-12). Seoul, Korea: Coastal Engineering Research Council.

Eldeberky, Y. (1996). Nonlinear transformation of wave spectra in the near-shore zone. Dissertation, Delft University of Technoloy. Delft, the Netherlands.

Eslami Arab, S., Van Dongeren, A., & Wellens, P. (2012). Studying the effect of linear refraction on low-frequency wave propagation (physical and numerical study). In Coastal Engineering Proceedings (Vol. 33, pp. 1-15). Santander, Spain. http://doi.org/https://doi.org/10.9753/icce.v33.waves.9

Gautier, C. (2010). SWAN Calibration and Validation for HBC2011. WTI - HR Zout. Technical report 1200103-020. Deltares, Delft.

Groeneweg, J., Van der Westhuysen, A. J., Van Vledder, G., Jacobse, S., Lansen, J., & van Dongeren, A. (2009). Wave modelling in a tidal inlet: performance of SWAN in the Wadden Sea. In Coastal Engineering Proceedings. Hamburg, Germany. http://doi.org/10.1142/9789814277426

Groeneweg, J., Van Gent, M., Van Nieuwkoop, J., & Toledo, Y. (2015). Wave Propagation into Complex Coastal Systems and the Role of Nonlinear Interactions. Journal of Waterway, Port, Coastal, and Ocean Engineering, 141(5), 1-17. http://doi.org/10.1061/(ASCE)WW.1943-5460.0000300.

Groeneweg, J., & Van Vledder, G. P. (2005). Tools for improving wave modeling and field measurements in shallow water. In Proc. Int. Symp. on Wave Measurement and Analysis. Madrid: ASCE.

Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K., … Walden, H. (1973). Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Deutches Hydrographisches Zeitschrift, 8(12), 1-95.

Hasselmann, S., & Hasselmann, K. (1985). Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part I: A new method for efficient computations of the exact nonlinear transfer integral. Journal of Physical Oceanography, 15(11), 1369-1377.

Hasselmann, S., Hasselmann, K., Allender, J. H., & Barnett, T. P. (1985). Computations and parameterizations of the nonlinear energy transfer in a gravity-wave specturm. Part II: Parameterizations of the nonlinear energy transfer for application in wave models. Journal of Physical Oceanography, 15(11), 1378-1391. http://doi.org/https://doi.org/10.1175/1520-0485(1985)015%3C1378:CAPOTN%3E2.0.CO;2

Holthuijsen, L. H., Herman, A., & Booij, N. (2003). Phase-decoupled refraction-diffraction for spectral wave models. Coastal Engineering, 49(4), 291-305. http://doi.org/https://doi.org/10.1016/S0378-3839(03)00065-6

Komen, G. J., Hasselmann, K., & Hasselmann, K. (1984). On the existence of a fully developed wind-sea spectrum. Journal of Physical Oceanography, 14(8), 1271-1285.

Pallares, E., Sánchez-Arcilla, A., & Espino, M. (2014). Wave energy balance in wave models (SWAN) for semi-enclosed domains-application to the Catalan coast. Continental Shelf Research, 87, 41-53.

Rogers, W. E., Babanin, A. V, & Wang, D. W. (2012). Observation-consistent input and whitecapping dissipation in a model for wind-generated surface waves: Description and simple calculations. Journal of Atmospheric and Oceanic Technology, 29(9), 1329-1346.

Rogers, W. E., Hwang, P. A., & Wang, D. W. (2003). Investigation of wave growth and decay in the SWAN model: three regional-scale applications. Journal of Physical Oceanography, 33(2), 366-389.

Salmon, J. E., & Holthuijsen, L. H. (2015). Modeling depth-induced wave breaking over complex coastal bathymetries. Coastal Engineering, 105, 21-35.

The SWAN team. (2017). SWAN Scientific and Technical Documentation. SWAN Cycle III version 41.10AB. Manual. Delft, the Netherlands. Retrieved from http://swanmodel.sourceforge.net/

Tolman, H. L. (2009). User manual and system documentation of WAVEWATCH III version 3.14. Manual. NOAA/NWS/NCEP/MMAB.

van der Westhuysen, A. J. (2010). Modeling of depth-induced wave breaking under finite depth wave growth conditions. Journal of Geophysical Research: Oceans, 115(C1).

Van der Westhuysen, A. J., Zijlema, M., & Battjes, J. (2007). Nonlinear saturation-based whitecapping dissipation in SWAN for deep and shallow water. Coastal Engineering, 54(2), 151-170.

Van Dongeren, A., Van der Westhuysen, A., Groeneweg, J., Van Vledder, G., Lansen, J., Smale, A., … Wenneker, I. (2011). Spectral Wave Modelling in Tidal Inlet Seas: Results From the Sbw Wadden Sea Project. In Coastal Engineering Proceedings (Vol. 1, pp. 1-15). Shanghai, China. http://doi.org/10.9753/icce.v32.waves.44

Van Nieuwkoop, J., & Groeneweg, J. (2014). Modelling of wave penetration in complex areas: analysis of hindcast data. Technical report 1209433-007. Deltares, Delft.

Van Vledder, G. P. (2006). Towards an optimal computation of non-linear four-wave interactions in operational wave models. In 9th International Workshop On Wave Hindcasting (p. 1). Victoria, British Columbia, Canada.

Van Vledder, G. P., & Koop, O. R. (2009). Analysis of wave penetration into the Eastern Wadden Sea. Technical report A2302. Alkyon, Marknesse, the Netherlands.

Wenneker, I., & Gautier, C. (2016). Overzicht van SWAN modellen in gebruik binnen de RWS primaire processen. Technical report 1230072-002. Deltares, Delft.

Yan, L. (1987). An improved wind input source term for third generation ocean wave modelling. Book. KNMI, the Netherlands.

Zijderveld, A., & Peters, H. (2008). Measurement programme Dutch Wadden Sea. In Coastal Engineering Proceedings (pp. 404-410). Hamburg, Germany: World Scientific.

Published
2018-12-30
How to Cite
Oosterlo, P., van der Meer, J. W., Hofland, B., & van Vledder, G. (2018). WAVE MODELLING IN A COMPLEX ESTUARY: STUDY IN PREPARATION OF FIELD MEASUREMENT CAMPAIGN EEMS-DOLLARD ESTUARY. Coastal Engineering Proceedings, 1(36), papers.66. https://doi.org/10.9753/icce.v36.papers.66

Most read articles by the same author(s)