GEOTECHNICAL PROPERTIES OF SALT MARSH AND TIDAL FLAT SUBSTRATES AT TILLINGHAM, ESSEX, UK.
ICCE 2018 Cover Image
PDF

Supplementary Files

Conference Presentation File

How to Cite

GEOTECHNICAL PROPERTIES OF SALT MARSH AND TIDAL FLAT SUBSTRATES AT TILLINGHAM, ESSEX, UK. (2018). Coastal Engineering Proceedings, 1(36), papers.55. https://doi.org/10.9753/icce.v36.papers.55

Abstract

Salt marshes and, to a lesser extent, tidal flats, attenuate incoming hydrodynamic energy, thus reducing flood and erosion risk in the coastal hinterland. However, marshes are declining both globally and regionally (the Northwest European region). Salt marsh resistance to incoming hydrodynamic forcing depends on marsh biological, geochemical and geotechnical properties. However, there currently exists no systematic study of marsh geotechnical properties and how these may impact both marsh edge and marsh surface erosion processes (e.g. surface removal, cliff undercutting, gravitational slumping). This has led to poor parameterization of marsh evolution models. Here, we present a systematic study of salt marsh and tidal flat geotechnical properties (shear strength, bulk density, compressibility, plasticity and particle size) at Tillingham, Essex, UK.
PDF

References

Allen, J. R. L. (2000). Morphodynamics of Holocene salt marshes: A review sketch from the Atlantic and Southern North Sea coasts of Europe. Quaternary Science Reviews, 19(12), 1155-1231. Bishop, A. & Henkel, D. (1962). The measurement of soil properties in the triaxial test. (2nd Edition). London: Arnold, (pp.228).

Brain, M. J., Long, A. J., Petley, D. N., Horton, B. P. & Allison, R. J. (2011). Compression behaviour of minerogenic low energy intertidal sediments. Sedimentary Geology, 233(1-4), 28-41.

British Standards Institute, (1990a). Part 3: Chemical and electro-chemical tests. BS 1377. London : British Standard Institution, pp.42.

British Standards Institute, (1990b). Part 7: Shear strength tests (total stress). BS 1377. London : British Standard Institution, pp.48.

British Standards Institute, (1990c). Part 2: Classification tests. BS 1377-2. London, British Standard Institution, pp.64.

British Standards Institute, (2015). Code of Practise for Ground Investigations. BS 5930. London : British Standard Institution, pp.318.

Burningham, H. & French, J. (2011). Seabed dynamics in a lage coastal embayment: 180 years of morphological change in the outer Thames estuary. Hydrobiologia, 672(1), 105-119.

Callaghan, D. P., Bouma, T. J., Klaassen, P., van der Wal, D., Stive, M. J. F. & Herman, P. M. J. (2010). Hydrodynamic forcing on salt-marsh development: Distinguishing the relative importance of waves and tidal flows. Estuarine, Coastal and Shelf Science, 89(1), 73-88.

Callaway, J. C., DeLaune, R. D. & Patrick, W. H. (1996). Chernobyl 137Cs used to determine sediment accretion rates at selected northern European coastal wetlands. Limnology and Oceanography, 41(3), 444-450.

Chatagnier, J. (2012). The Biomechanics of Salt Marsh Vegetation Applied To Wave and Surge Attenuation. Unpublished Masters Thesis, Louisiana State University and Agricultural and Mechanical College, (pp.55).

Crooks, S., & Pye, K. (2000). Sedimentological controls on the erosion and morphology of saltmarshes: implications for flood defence and habitat recreation. In: Pye, K. & Allen, J. R. L. (Eds.), Coastal and Estuarine Environments: sedimentology, geomorphology and geoarchaeology. Geological Society, London, Special Publications, Vol. 175, pp.207-222.

Day, R. W. (2001). Soil Testing Manual. New York, NY: McGraw Hill, (pp.618).

Environmental Futures, (2003). Wetland valuation: State of the art and opportunities for further development. Proceedings of a workshop organised for the Environment. In L. Ledoux (Ed.), Proceedings of a workshop organised for the Environment Agency by Environmental Futures Ltd and CSERGE. Norwich, UK, (pp.1-125).

Fagherazzi, S., Carniello, L., D'Alpaos, L. & Defina, A. (2006). Critical bifurcation of shallow microtidal landforms in tidal flats and salt marshes. Proceedings of the National Academy of Sciences, 103(22), 8337-8341.

Fagherazzi, S. & Wiberg, P. L. (2009). Importance of wind conditions, fetch, and water levels on wave-generated shear stresses in shallow intertidal basins. Journal of Geophysical Research: Solid Earth, 114(F3), 1-12.

Gedan, K. B., Silliman, B. R. & Bertness, M. D. (2009). Centuries of human-driven change in salt marsh ecosystems. Annual Review of Marine Science, 1, 117-141.

Greensmith, J. T. & Tucker, E. V. (1965). Salt Marsh Erosion in Essex. Nature, 206(4984), 606-607.

Greensmith, J. T. & Tucker, E. V. (1975). Dynamic structures in the Holocene Chenier plain setting of Essex, England. In J. Hails & A. Carr (Eds.), Nearshore sediment dynamics and sedimentation. (pp. 251-272). Chichester: John Wiley.

Harmsworth, G. C., & Long, S. P. (1986). An assessment of saltmarsh erosion in Essex, England, with reference to the Dengie Peninsula. Biological Conservation, 35(4), 377-387.

Head, K. H. (1980). Manual of Soil Laboratory Testing, Volume 1: Soil Classification and Compaction Tests. London: Plymouth: Pentech Press, (pp.339).

Hoek, E. & Bray, J. (1974). Rock Slope Engineering. London: The Institution of Mining and Metallurgy, Unwin Brothers Limited, (pp.309).

Le Hir, P., Monbet, Y. & Orvain, F. (2007). Sediment erodability in sediment transport modelling: Can we account for biota effects? Continental Shelf Research, 27(8), 1116-1142.

Leonardi, N., Carnacina, I., Donatelli, C., Ganju, N. K., Plater, A. J., Schuerch, M. & Temmerman, S. (2018). Dynamic interactions between coastal storms and salt marshes: A review. Geomorphology, 301, 92-107.

Mariotti, G. & Carr, J. (2014). Dual role of salt marsh retreat: Long-term loss and short-term resilience. Water Resources Research, 50(4), 2963-2974.

Mariotti, G. & Fagherazzi, S. (2010). A numerical model for the coupled long-term evolution of salt marshes and tidal flats. Journal of Geophysical Research: Earth Surface, 115(F1), 1-15.

Mariotti, G. & Fagherazzi, S. (2013). Critical width of tidal flats triggers marsh collapse in the absence of sea-level rise. Proceedings of the National Academy of Sciences of the United States of America., 110(14), 5353-5356.

Möller, I. (2006). Quantifying saltmarsh vegetation and its effect on wave height dissipation: Results from a UK East coast saltmarsh. Estuarine, Coastal and Shelf Science, 69(3-4), 337-351.

Möller, I. & Spencer, T. (2002). Wave dissipation over macro-tidal saltmarshes: Effects of marsh edge typology and vegetation change. Journal of Coastal Research, 36(36), 506-521.

Morris, J, T., Sundareshwar, P. V., Nietch, C. T., Kjerfve, B. & Cahoon, D. R. (2002). Responses of coastal wetlands to rising sea level. Ecology, 83(10), 2869-2877.

Pye, K. (2000). Saltmarsh erosion in southeast England: mechanisms, causes and implications. In B. R. Sherwood, B. G. Gardiner, & H. T (Eds.), British Saltmarshes. Cardigan/London, (pp.359-396).

Pye, K. & French, J. (1993). Erosion and Accretion Processes on British Salt marshes: Final report to MAFF (5 Volumes). Cambridge.

Reed, J. (1988). Sediment Retreating Dynamics and Deposition in a Retreating Coastal Salt Marsh. Estuarine, Coastal and Shelf Science, 26(1), 67-79.

Reed, D. J. (1995). The Response of Coastal Marshes To Sea-Level Rise: Survival or Submergence? Earth Surface Processes and Landforms, 20(1), 39-48.

Rupprecht, F., Möller, I., Evans, B., Spencer, T. & Jensen, K. (2015). Biophysical properties of salt marsh canopies - Quantifying plant stem flexibility and above ground biomass. Coastal Engineering, 100, 48-57.

Schuerch, M., Rapaglia, J., Liebetrau, V., Vafeidis, A. & Reise, K. (2012). Salt Marsh Accretion and Storm Tide Variation: An Example from a Barrier Island in the North Sea. Estuaries and Coasts, 35(2), 486-500.

Skempton, A. W. (1953). The Colloidal "Activity† of Clays. In ICOSOMEF (Ed.), Proceedings of the 3rd International Conference on Soil Mechanics and Foundation Engineering, Zurich, (pp.61-77).

Spencer, T., Brooks, S. M., Möller, I. & Evans, B. R. (2014). Where local matters: Impacts of a major north sea storm surge. Eos, 95(30), 269-270.

Tonelli, M., Fagherazzi, S. & Petti, M. (2010). Modeling wave impact on salt marsh boundaries. Journal of Geophysical Research: Oceans, 115(C9), 1-17.

Turner, R. E., Swenson, E. M. & Milan, C. S. (2001). Organic and inorganic contributions to vertical accretion in salt marsh sediments. In M. Weinstein & K. Kreeger (Eds.), Concepts and Controversies in Tidal Marsh Ecology (pp. 583-595). Dordrecht, Netherlands: Kluwer Academic Publishers.

Turner, R. E., Baustian, J. J., Swenson, E. M. & Spicer, J. S. (2006). Wetland Sedimentation from Hurricanes Katrina and Rita. Science, 314(5798), 449-452.

van der Wal, D. & Pye, K. (2004). Patterns, rates and possible causes of saltmarsh erosion in the Greater Thames area (UK). Geomorphology, 61(3-4), 373-391.

Wentworth, C. K. (1922). A scale of grade and class terms for clastic sediments. The Journal of Geology, 30(5), 372-392.

Authors retain copyright and grant the Proceedings right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Proceedings.