A NUMERICAL STUDY OF THE IMPORTANCE OF NONLINEAR EFFECTS FOR FABRY-PEROT RESONANCE OF WATER WAVES

  • Michel Benoit
  • Jie Zhang

Abstract

When a regular wave train propagates over a patch of periodic bottom corrugations on an otherwise flat bottom (with still water depth h), the so called Bragg resonance phenomenon can appear, leading to a significant reflection of the incident waves due to the presence of the ripple patch. This effect is maximum when the wavelength of the surface waves (noted A = 2n/k) is twice that of the bottom ripples (noted Ab = 2n/kb). This phenomenon has been studied both experimentally (e.g. Davies & Heathershaw, 1984) and theoretically within the linear wave theory framework (e.g. Mei, 1985; Dalrymple & Kirby, 1986).

References

Couston, Guo, Chamanzar, Alam (2015): Fabry-Perot resonance of water waves. Phys. Rev. E,vol. 92, 043015.

Dalrymple, Kirby (1986): Water waves over ripples.

J. Waterw. Port Coast. Ocean Eng. Div. ASCE , vol. 112, pp. 309-319.

Davies, Heathershaw (1984): Surface wave propagation over sinusoidally varying topography. J. Fluid Mech., vol. 144, pp.419-443.

Mei (1985): Resonant reflection of surface waves by periodic sandbars. J. Fluid Mech., vol. 152, pp. 315-337.

Yu, Mei (2000): Do longshore bars shelter the shore? J. Fluid Mech.,vol. 404 , pp. 251-268.

Raoult, Yates, Benoit (2016): Validation of a fully nonlinear and dispersive wave model with laboratory non­ breaking experiments. Coastal Eng., vol. 114, pp. 194- 207.

Yates , Benoit (2015): Accuracy and efficiency of two numerical methods of solving the potential flow problem for highly nonlinear and dispersive water waves. Int. J. Num. Meth. Fluids, vol. 77(10), pp. 616-640.

Published
2018-12-30
How to Cite
Benoit, M., & Zhang, J. (2018). A NUMERICAL STUDY OF THE IMPORTANCE OF NONLINEAR EFFECTS FOR FABRY-PEROT RESONANCE OF WATER WAVES. Coastal Engineering Proceedings, 1(36), waves.26. https://doi.org/10.9753/icce.v36.waves.26

Most read articles by the same author(s)