STUDY OF CROSS-SHORE PROFILES AT SOUTH COASTS OF THE CASPIAN SEA UNDER RAPID CHANGES IN WATER LEVEL
ICCE 2022
PDF (Inglés)

Cómo citar

STUDY OF CROSS-SHORE PROFILES AT SOUTH COASTS OF THE CASPIAN SEA UNDER RAPID CHANGES IN WATER LEVEL. (2023). Coastal Engineering Proceedings, 37, papers.56. https://doi.org/10.9753/icce.v37.papers.56

Resumen

Coastal zone management needs the prediction of the changes in shoreline and coastal profiles, where the fluctuation of sea water level plays an essential role. Climate change and human activities have accelerated the fluctuation/falling of water levels in lakes and enclosed water basins. Using satellite images and cross-shore beach profiles at twelve monitoring stations along the southern coasts of the Caspian Sea, the effect of the rapid fall of water level on the nearshore morphology is studied in this research. Radiometric and atmospheric corrections are made on satellite images, and the NDWI index is used to increase the accuracy of the shoreline extraction. Comparing the accuracy of different methods, it is concluded that the Hands (1984) formula relatively better predicts the shoreline advancement rate due to lowering water level.
PDF (Inglés)

Referencias

Ataei H, S., Adjami, M. and Neshaei, S.A. 2018. The effects of sea level fall on the Caspian Sea shoreline

changes, International Journal of Coastal and Offshore Engineering, 3(3), pp.1-12.

Bird, E.C. 1985, Coastline changes. A global review.

Bruun, P. 1954. Coast erosion and the development of beach profiles (Vol. 44). US Beach Erosion Board.

Bruun, P. 1962. Sea-level rise as a cause of shore erosion, Journal of the Waterways and Harbors

division, 88(1), pp.117-130.

Dean, R.G. 1991. Equilibrium beach profiles: characteristics and applications, Journal of coastal research, pp.53-84.

Do, A.T., Vries, S.D. and Stive, M.J. 2019. The estimation and evaluation of shoreline locations, shoreline-change rates, and coastal volume changes derived from Landsat images, Journal of Coastal Research, 35(1), pp.56-71.

Du, Z., Bin, L., Ling, F., Li, W., Tian, W., Wang, H., Gui, Y., Sun, B. and Zhang, X. 2012. Estimating

surface water area changes using time-series Landsat data in the Qingjiang River Basin, China,

Journal of Applied Remote Sensing, 6(1), p.063609.

Frazier, P.S. and Page, K.J. 2000. Water body detection and delineation with Landsat TM data,

Photogrammetric engineering and remote sensing, 66(12), pp.1461-1468.

Giralt, S., Julia, R., Leroy, S. and Gasse, F. 2003. Cyclic water level oscillations of the KaraBogazGol–

Caspian Sea system, Earth and Planetary science letters, 212(1-2), pp.225-239.

Guariglia, A., Buonamassa, A., Losurdo, A., Saladino, R., Trivigno, M.L., Zaccagnino, A. and

Colangelo, A. 2006. A multisource approach for coastline mapping and identification of shoreline

changes, Annals of geophysics, 49(1).

Hands. 1984. The great lakes as a test model profile response to sea level change, Coastal Engineering

Research center, Department of the army, Waterways Experiment Station, Corps of Engineers PO

Box 631.

Hoseini, S.M. and Soltanpour, M. 2020. LONG-TERM PREDICTION OF CASPIAN SEA LEVEL

UNDER CMIP6 SCENARIOS USING ARTIFICIAL NEURAL NETWORKS, Coastal

Engineering Proceedings, (36v), pp.5-5.

Karsli, F., Guneroglu, A. and Dihkan, M. 2011. Spatio-temporal shoreline changes along the southern

Black Sea coastal zone. Journal of Applied Remote Sensing, 5(1), p.053545.

Kuleli, T., Guneroglu, A., Karsli, F. and Dihkan, M. 2011. Automatic detection of shoreline changes on

coastal Ramsar wetlands of Turkey, Ocean Engineering, 38(10), pp.1141-1149.

Lu, D. and Weng, Q. 2007. A survey of image classification methods and techniques for improving

classification performance, International journal of Remote sensing, 28(5), pp.823-870.

McFeeters, S.K. 1996. The use of the Normalized Difference Water Index (NDWI) in the delineation of

open water features, International journal of remote sensing, 17(7), pp.1425-1432.

Phinn, S.R., Menges, C., Hill, G.J. and Stanford, M. 2000. Optimizing remotely sensed solutions for

monitoring, modeling, and managing coastal environments, Remote Sensing of Environment,

(2), pp.117-132.

Rodionov, S. 1994. Global and regional climate interaction: The Caspian Sea experience (Vol. 11),

Springer Science & Business Media.

Rokni, K., Ahmad, A., Selamat, A. and Hazini, S. 2014. Water feature extraction and change detection

using multitemporal Landsat imagery, Remote sensing, 6(5), pp.4173-4189.

Rosati, J.D., Dean, R.G. and Walton, T.L. 2013. The modified Bruun Rule extended for landward

transport, Marine Geology, 340, pp.71-81.

Tyagi, P. and Bhosle, U. 2011. Atmospheric correction of remotely sensed images in spatial and

transform domain, International Journal of Image Processing, 5(5), pp.564-579.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Derechos de autor 2023 Hesamodin Enayati, Mohsen Soltanpour, Tomoya Shibayama, Ioan Nistor