How to Cite

LONG-TERM PREDICTION OF CASPIAN SEA LEVEL UNDER CMIP6 SCENARIOS USING ARTIFICIAL NEURAL NETWORKS. (2020). Coastal Engineering Proceedings, 36v, papers.5. https://doi.org/10.9753/icce.v36v.papers.5


Artificial Neural Network (ANN) is employed to predict the long-term Caspian Sea level (CSL). 114-year observed CSL data (1900-2014) and the precipitation and temperature of historical and future scenarios of Coupled Model Intercomparison Phase 6 (CMIP6) are used to predict the future fluctuations of CSL (2015-2050). The values of the statistical indices in training, validating and testing periods (1900-2014) indicate the efficiency of the ANN in reconstruction of the CSL. Considering the outputs of different climate change projections (CMIP6) and excluding the human interventions, the study predicts the CSL fluctuation range of -28 m to -26m until 2050.

Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/Kfj-gr65TR8


Alotaibi, K., Ghumman, A.R., Haider, H., Ghazaw, Y.M., Shafiquzzaman, M., 2018. Future predictions of rainfall and temperature using GCM and ANN for arid regions: A case study for the Qassim region, Saudi Arabia. Water (Switzerland) 10. https://doi.org/10.3390/w10091260

Arpe, K., Bengtsson, L., Golitsyn, G.S., Mokhov, I.I., Semenov, V.A., Sporyshev, P. V., 2000. Connection between Caspian Sea level variability and ENSO. Geophys. Res. Lett. 27, 2693–2696. https://doi.org/10.1029/1999GL002374

Arpe, K, Bengtsson, L., Golitsyn, G.S., Mokhov, I.I., Semenov, V.A., Sporyshev, P. V, 2000. Connection between Caspian Sea level variability the rivers flowing into the Sea is about mean to December of next year ) and SSTs ( mean mean ). Values. Geophys. Res. Lett. 27, 2693–2696.

Berg, L.S., 1934. The Caspian Sea level for the historical period. Probl. Fiz. Geogr. (Problems Phys. Geogr. 11-64 (In Russian).

CASPCOM Working Group, 2011. General Catalogue of the Caspian Sea Level. Coord. Comm. Hydrometeorol. Pollut. Monit. Casp. Sea. URL http://www.caspcom.com/ (accessed 9.5.20).

Chen, J.L., Pekker, T., Wilson, C.R., Tapley, B.D., Kostianoy, A.G., Cretaux, J.F., Safarov, E.S., 2017. Long-term Caspian Sea level change. Geophys. Res. Lett. 44, 6993–7001. https://doi.org/10.1002/2017GL073958

Cinquini, L., Crichton, D., Mattmann, C., Harney, J., Shipman, G., Wang, F., ... & Pobre, Z., 2014. The Earth System Grid Federation: An open infrastructure for access to distributed geospatial data. Futur. Gener. Comput. Syst. 36, 400–417. https://doi.org/https://doi.org/10.1016/j.future.2013.07.002

Dehbashi M, Azarmsa S A, Vafakhah M, 2017. Water Level Fluctuation Analysis and Forecast in the Caspian Sea Using Stochastic Time Series models. marine-engineering 13, 23–33.

Elguindi, N., Giorgi, F., 2007. Simulating future Caspian sea level changes using regional climate model outputs. Clim. Dyn. 28, 365–379. https://doi.org/10.1007/s00382-006-0185-x

Elguindi, N., Giorgi, F., 2006a. Simulating multi-decadal variability of Caspian Sea level changes using regional climate model outputs. Clim. Dyn. 26, 167–181. https://doi.org/10.1007/s00382-005-0077-5

Elguindi, N., Giorgi, F., 2006b. Projected changes in the Caspian Sea level for the 21st century based on the latest AOGCM simulations. Geophys. Res. Lett. 33, 4–7. https://doi.org/10.1029/2006GL025943

Eyring, V., Bony, S., Meehl, G.A., Senior, C., Stevens, B., Stouffer, R.J., Taylor, K.E., 2015. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organisation. Geosci. Model Dev. Discuss. 8, 10539–10583. https://doi.org/10.5194/gmdd-8-10539-2015

Giralt, S., Julià, R., Leroy, S., Gasse, F., 2003. Cyclic water level oscillations of the KaraBogazGol - Caspian Sea system. Earth Planet. Sci. Lett. 212, 225–239. https://doi.org/10.1016/S0012-821X(03)00259-0

Golitsyn, G.S., and G.N. Panin, 1989. The water balance and modern variations of the level of the Caspian Sea. Sov. Meteorol. Hydrol. 46–52.

Goyal, M.K., and C. S.P. Ojha, 2012. Downscaling of surface temperature for lake catchment in an arid region in India using linear multiple regression and neural networks. Int. J. Climatol. 32, 552–566. https://doi.org/10.1002/joc.2286

Imani, M., You, R.J., Kuo, C.Y., 2014. Caspian Sea level prediction using satellite altimetry by artificial neural networks. Int. J. Environ. Sci. Technol. 11, 1035–1042. https://doi.org/10.1007/s13762-013-0287-z

Kalinin, G.P., 1968. The Global Hydrology Problems. Gidrometeoizdat 378 (in Russian).

O’Neill, B.C., Tebaldi, C., Van Vuuren, D.P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.F., Lowe, J., Meehl, G.A., Moss, R., Riahi, K., Sanderson, B.M., 2016. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482. https://doi.org/10.5194/gmd-9-3461-2016

Okkan, U., Inan, G., 2015. Statistical downscaling of monthly reservoir inflows for Kemer watershed in Turkey: Use of machine learning methods, multiple GCMs and emission scenarios. Int. J. Climatol. 35, 3274–3295. https://doi.org/10.1002/joc.4206

Okkan, U., Kirdemir, U., 2016. Downscaling of monthly precipitation using CMIP5 climate models operated under RCPs. Meteorol. Appl. 23, 514–528. https://doi.org/10.1002/met.1575

Overeem, I., Veldkamp, A., Tebbens, L., Kroonenberg, S.B., 2003. Modelling Holocene stratigraphy and depocentre migration of the Volga delta due to Caspian Sea-level change. Sediment. Geol. 159, 159–175. https://doi.org/10.1016/S0037-0738(02)00257-9

Panin, G.N., and I.V. Divakov, 1991. Estimation of possible variations of evaporation from the North Caspian Sea under the conditions of sea level rising. Sov. Meteorol. Hydrol. 51–57.

Patil, N.S., Laddimath, R.S., Hooli, S., 2015. Downscaling of Precipitation Data from GCM outputs using Artificial Neural Network for Bhima basin 10, 1493–1508.

Renssen, H., Lougheed, B.C., Aerts, J.C.J.H., de Moel, H., Ward, P.J., Kwadijk, J.C.J., 2007. Simulating long-term Caspian Sea level changes: The impact of Holocene and future climate conditions. Earth Planet. Sci. Lett. 261, 685–693. https://doi.org/10.1016/j.epsl.2007.07.037

Rodionov, S.N., 1994. Global and regional climate interaction: the Caspian Sea experience, Global and regional climate interaction: the Caspian Sea experience.

Roshan, G., Moghbel, M., Grab, S., 2012. Modeling Caspian Sea water level oscillations under different scenarios of increasing atmospheric carbon dioxide concentrations. J. Environ. Heal. Sci. Eng. 9, 1–10.

Swart, N.C., Cole, J.N.S., Kharin, V. V., Lazare, M., Scinocca, J.F., Gillett, N.P., Anstey, J., Arora, V., Christian, J.R., Hanna, S., Jiao, Y., Lee, W.G., Majaess, F., Saenko, O.A., Seiler, C., Seinen, C., Shao, A., Sigmond, M., Solheim, L., Von Salzen, K., Yang, D., Winter, B., 2019. The Canadian Earth System Model version 5 (CanESM5.0.3). Geosci. Model Dev. 12, 4823–4873. https://doi.org/10.5194/gmd-12-4823-2019

Varuschenko, S.I., Varuschenko, A.H., and Klige, R.K., 1978. Changes in Regime of the Caspian Sea and Closed Water Bodies in Paleotime (In Russian).

Vaziri, B.M., 1997. Predicting Caspian Sea Surface Water Level 158–162.

Vu, M.T., Aribarg, T., Supratid, S., Raghavan, S. V., Liong, S.Y., 2016. Statistical downscaling rainfall using artificial neural network: significantly wetter Bangkok? Theor. Appl. Climatol. 126, 453–467. https://doi.org/10.1007/s00704-015-1580-1

Yazdandoost, F., Moradian, S., Izadi, A., Aghakouchak, A., 2020. Evaluation of CMIP6 precipitation simulations across different climatic zones: Uncertainty and model intercomparison. Atmos. Res. 105369. https://doi.org/10.1016/j.atmosres.2020.105369

Authors retain copyright and grant the Proceedings right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Proceedings.