ICCE 2014 Cover Image


shallow wave breaking
triad wave-wave interactions
spectral wave modelling

How to Cite

Salmon, J. E., Holthuijsen, L., Smit, P., Van Vledder, G., & Zijlema, M. (2014). ALTERNATIVE SOURCE TERMS FOR SWAN IN THE COASTAL REGION. Coastal Engineering Proceedings, 1(34), waves.22.


This paper presents the application of new source terms in SWAN for the dominant water wave physics in the coastal zone: depth-induced breaking and triad wave-wave interactions. We present results demonstrating increased modelling skill in the prediction of bulk wave parameters e.g. significant wave height and of the spectral shape compared to currently used defaults, particularly in cases with horizontal bathymetries. These preliminary results suggest a greater range of applicability of these source terms for operational applications.


Battjes, J.A., and J.P.F.M. Janssen. 1978. Energy loss and set-up due to breaking of random waves, Proc. of 16th Int. Conf. on Coastal Engng., ASCE, 569-587.

Battjes, J.A., and M.J.F. Stive. 1985. Calibration and verification of a dissipation model for random breaking waves, J. Geophys. Res., 90, C5, 9159-9167.

Becq-Girard, F., P. Forget, and M. Benoit. 1999. Non-linear propagation of unidirectional wave fields over varying topography, Coast. Eng., 38, 91-113.

Beji, S., and J.A. Battjes. 1993. Experimental investigation of wave propagation over a bar, Coast. Eng., 19, 151-162.

Booij, N., L.H. Holthuijsen, and M.P. Bénit. 2009. A distributed collinear triad approximation in SWAN, Coastal Dynamics 2009, 1-10.

Bouws, E., H. Gunther, W. Rosenthal, and C.L. Vincent. 1985. Similarity of the wind wave spectrum in finite depth water 1. Spectral form, J. Geophys. Res., 90, C1, 975-986.

Bretherton, F.P., and C.J.R., Garrett. 1968. Wavetrains in inhomogeneous moving media, Proc. R. Soc. London A, 302(1471), 529-554, doi:10.1098/rspa.1968.0034.

Chen, Y., R.T. Guza, and S. Elgar. 1997. Modeling spectra of breaking surface waves in shallow water, J. Geophys. Res., 102, C11, 25035-25046.

Doering, J.R.C., and A.J. Bowen. 1995. Parameterization of orbital velocity asymmetries of shoaling and breaking waves using bispectral analysis, Coast. Eng., 26, 15-33

Eldeberky, Y. 1996. Nonlinear transformation of wave spectra in the nearshore zone, Ph.D. thesis, Delft University of Technology, Department of Civil Engineering, The Netherlands, 203 pp. also as Commun. Hydr. Geotech. Eng., 96 - 4, 203 pp.

Hasselmann, K., T.P. Barnett, E. Bouws, H. Carlson, D.E. Cartwright, K. Enke, J.A. Ewing, H. Gienapp, D.E. Hasselmann, P. Kruseman, A. Meerburg, P. Muller, D.J. Olbers, K. Richter, W. Sell, and H. Walden. 1973. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP), Dtsch. Hydrogr. Z., Suppl., A8, 12, 95 p.

Hasselmann, S., K. Hasselmann, J.H. Allender, and T.P. Barnett. 1985. Computations and parameterizations of the nonlinear energy transfer in a gravity wave spectrum. Part II: Parameterizations of the nonlinear transfer for application in wave models, J. Phys. Oceanogr., 15, 11, 1378-1391.

Holloway, G. 1980. Oceanic internal waves are not weak waves, J. Phys. Oceanogr., 10, 906-914.

Janssen, P.A.E.M., G.J. Komen, and W.J.P. de Voogt. 1984. An operational coupled hybrid wave prediction model, J. Geophys. Res., 89, C3, 3635-3654.

Jensen, M.S. 2002. Breaking of waves over a steep bottom slope, Ph.D. thesis, Hydraulics & Coastal Engineering Laboratory, Department of Civil Engineering, Aalborg University, Denmark, ISSN 0909-4296, Series paper No. 22, 162 pp.

Komen, G.J., S. Hasselmann, and K. Hasselmann. 1984. On the existence of a fully developed wind-sea spectrum, J. Phys. Oceanogr., 14, 8, 1271-1285.

Kuik, A.J., G.Ph. van Vledder, and L.H. Holthuijsen. 1988. A method for the routine analysis of pitch-and-roll buoy wave data, J. Phys. Oceanogr., 18, 7, 1020-1034.

Longuet-Higgins, M.S. 1974. On the mass, momentum, energy and circulation of a solitary wave, Proc. Roy. Soc., A, 337, 1 - 13.

Madsen, P.A., and O.R. Sørensen. 1993. Bound waves and triad interactions in shallow water, Ocean Eng., 20, 4, 359-388.

McCowan, J. 1894. On the highest wave of permanent type, Phil. Mag., Series 5, 32, 351-358. Cited by Longuet-Higgins (1974).

Nelson, R.C. 1997. Height limits in top down and bottom up wave environments, Coast. Eng., 32, 247-254.

Rattanapitikon, W. 2007. Calibration and modification of energy dissipation models for irregular wave breaking, Ocean Eng., 34, 1592 - 1601.

Ris, R.C., N. Booij, and L.H. Holthuijsen. 1999. A third-generation wave model for coastal regios, Part II, Verification, J. Geophys. Res., 104, C4, 7667 - 7681.

Rogers, W.E., P.A. Hwang, and D. Wang. 2003. Investigation of wave growth and decay in the SWAN model: three regional-scale applications, J. Phys. Oceanogr., 33, 366-389.

Salmon, J.E., L.H. Holthuijsen, M. Zijlema, G.Ph. van Vledder, and J.D. Pietrzak. 2014. Scaling depth-induced wave-breaking in third-generation spectral wave models. Manuscript submitted for publication.

Smith, J.M. 2004. Shallow-water spectral shapes, Proc. of 29th Int. Conf. Coastal Engng., World Scientific, 206-217.

Van der Westhuysen, A.J.. 2010. Modeling of depth-induced wave breaking under finite depth wave growth conditions, J. Geophys. Res., 115, C01008, doi: 10.1029/2009JC005433.

Van Vledder, G.Ph., J.G. de Ronde, and M.J.F. Stive. 1994. Performance of a spectral wind-wave model in shallow water, Proc. of 24th Int. Conf. on Coastal Engng., ASCE, 761-774.

Van Vledder, G.Ph., J. Groeneweg, and A.J. van der Westhuysen. 2008. Numerical and physical aspects of wave modeling in a tidal inlet, Proc. of 31st Int. Conf. Coastal Engng., World Scientific, 424-436.

WAMDI group, 13 authors. 1988. The WAM model - a third generation ocean wave prediction model, J. Phys. Oceanogr., 18, 12, 1775-1810.

Zijlema, M., and A.J. van der Westhuysen. 2005. On the convergence behaviour and numerical accuracy in stationary SWAN simulations of nearshore wind wave spectra, Coast. Eng., 52, 237-256.

Zijlema, M., G.Ph. van Vledder, and L.H. Holthuijsen. 2012. Bottom friction and wind drag for spectral wave models, Coast. Eng., 65, 19-26.

Authors retain copyright and grant the Proceedings right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Proceedings.