ICCE 2022

How to Cite

WAVES AND STORM SURGES OF TROPICAL CYCLONES OVER THE ARABIAN SEA: FUTURE PROJECTIONS AND UNCERTAINTY ANALYSIS. (2023). Coastal Engineering Proceedings, 37, papers.40. https://doi.org/10.9753/icce.v37.papers.40


The present study aims to address the future projection of waves and storm surges of Tropical cyclones over the Arabian Sea, using the atmosphere-ocean numerical models and CMIP5 climate models. A Pseudo Global Warming (PGW) approach was utilised to implement the future climate and a WRF-FVCOM-SWAN framework was utilized to estimate the changes of a historical event in the future climate. The uncertainties included in different parts of the framework can lead to remarkable changes in this future estimation and are required to be addressed and quantified for a more appropriate estimation. Different factors such as forcing, boundary condition, and physics play a significant role in the uncertainties of wave and surge models. The study revealed that the wind forcing provided by the WRF model is the governing factor with the highest importance.


Bastidas, L. A., Knighton, J., and Kline, S. W. 2016. Parameter sensitivity and uncertainty analysis for a storm surge and wave model. Natural Hazards and Earth System Sciences, 16(10), 2195–2210. https://doi.org/10.5194/nhess-16-2195-2016

Camelo, J., Mayo, T. L., and Gutmann, E. D. 2020. Projected Climate Change Impacts on Hurricane Storm Surge Inundation in the Coastal United States. Frontiers in Built Environment, 6(December). https://doi.org/10.3389/fbuil.2020.588049

Egbert, G. D., and Erofeeva, S. Y. 2002. Efficient Inverse Modeling of Barotropic Ocean Tides. Journal of Atmospheric and Oceanic Technology, 19(2), 183–204. https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2

Evan, A. T., and Camargo, S. J. 2011. A Climatology of Arabian Sea Cyclonic Storms. Journal of Climate, 24(1), 140–158. https://doi.org/10.1175/2010JCLI3611.1

Lin, N., and Chavas, D. 2012. On hurricane parametric wind and applications in storm surge modeling. Journal of Geophysical Research: Atmospheres, 117(D9), n/a-n/a. https://doi.org/10.1029/2011JD017126

MMAB. 2016. WAVEWATCH III Model Data Access. https://polar.ncep.noaa.gov/waves/ensemble/download.shtml

Mori, N., Ariyoshi, N., Shimura, T., Miyashita, T., and Ninomiya, J. 2021. Future projection of maximum potential storm surge height at three major bays in Japan using the maximum potential intensity of a tropical cyclone. Climatic Change, 164(3–4), 25. https://doi.org/10.1007/s10584-021-02980-x

Murakami, H., Sugi, M., and Kitoh, A. 2013. Future changes in tropical cyclone activity in the North Indian Ocean projected by high-resolution MRI-AGCMs. Climate Dynamics, 40(7–8), 1949–1968. https://doi.org/10.1007/s00382-012-1407-z

Murakami, H., Wang, Y., Yoshimura, H., Mizuta, R., Sugi, M., Shindo, E., Adachi, Y., Yukimoto, S., Hosaka, M., Kusunoki, S., Ose, T., and Kitoh, A. 2012. Future Changes in Tropical Cyclone Activity Projected by the New High-Resolution MRI-AGCM. Journal of Climate, 25(9), 3237–3260. https://doi.org/10.1175/JCLI-D-11-00415.1

Pattanayak, S., Mohanty, U. C., and Dube, S. K. 2016. The Storm Surge Prediction over Bay of Bengal and Arabian Sea: A Review. In Advanced Numerical Modeling and Data Assimilation Techniques for Tropical Cyclone Prediction (pp. 691–723). Springer Netherlands. https://doi.org/10.5822/978-94-024-0896-6_27

Ranji, Z., Zarifsanayei, A. R., Cartwright, N., and Soltanpour, M. 2022. Climate change impacts on tropical cyclones of the Arabian Sea: Projections and uncertainty investigations. International Journal of Climatology, 42(10), 5121–5141. https://doi.org/10.1002/joc.7523

Soltanpour, M., Ranji, Z., Shibayama, T., Ghader, S., and Nishizaki, S. 2018. NUMERICAL SIMULATION OF TROPICAL CYCLONES AND STORM SURGES IN THE ARABIAN SEA. Coastal Engineering Proceedings, 1(36), 11. https://doi.org/10.9753/icce.v36.papers.11

Terry, J., Al Ruheili, A., Boldi, R., Gienko, G., and Stahl, H. 2022. Cyclone Shaheen : the exceptional tropical cyclone of October 2021 in the Gulf of Oman. Weather, 77(10), 364–370. https://doi.org/10.1002/wea.4193

Toyoda, M., Fukui, N., Miyashita, T., Shimura, T., and Mori, N. 2022. Uncertainty of storm surge forecast using integrated atmospheric and storm surge model: a case study on Typhoon Haishen 2020. Coastal Engineering Journal, 64(1), 135–150. https://doi.org/10.1080/21664250.2021.1997506

Walsh, K. J. E., McBride, J. L., Klotzbach, P. J., Balachandran, S., Camargo, S. J., Holland, G., Knutson, T. R., Kossin, J. P., Lee, T., Sobel, A., and Sugi, M. 2016. Tropical cyclones and climate change. WIREs Climate Change, 7(1), 65–89. https://doi.org/10.1002/wcc.371

Warder, S. C., Horsburgh, K. J., and Piggott, M. D. 2021. Adjoint-based sensitivity analysis for a numerical storm surge model. Ocean Modelling, 160(February), 101766. https://doi.org/10.1016/j.ocemod.2021.101766

Yang, J., Kim, S., Son, S., Mori, N., and Mase, H. 2020. Assessment of uncertainties in projecting future changes to extreme storm surge height depending on future SST and greenhouse gas concentration scenarios. Climatic Change, 162(2), 425–442. https://doi.org/10.1007/s10584-020-02782-7

Yazdandoost, F., Zakipour, M., and Izadi, A. 2021. Copula based post-processing for improving the NMME precipitation forecasts. Heliyon, 7(9), e07877. https://doi.org/10.1016/j.heliyon.2021.e07877

Zhong, L., Li, M., and Zhang, D.-L. 2010. How do uncertainties in hurricane model forecasts affect storm surge predictions in a semi-enclosed bay? Estuarine, Coastal and Shelf Science, 90(2), 61–72. https://doi.org/10.1016/j.ecss.2010.07.001

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 Zahra Ranji, Mohsen Soltanpour, Tomoya Shibayama