WAVE OVERTOPPING AT DIKES AND BREAKWATERS UNDER OBLIQUE WAVE ATTACK
ICCE 2022
PDF (Inglés)

Cómo citar

WAVE OVERTOPPING AT DIKES AND BREAKWATERS UNDER OBLIQUE WAVE ATTACK. (2023). Coastal Engineering Proceedings, 37, papers.5. https://doi.org/10.9753/icce.v37.papers.5

Resumen

The crest level of coastal structures such as dikes and breakwaters is often based on estimates of the amount of wave overtopping. One of the important parameters affecting wave overtopping is the angle of the incident waves since oblique waves can significantly reduce the amount of wave overtopping compared to perpendicular wave attack. Based on 3D physical model tests on dikes, rubble mound breakwaters and vertical caisson breakwaters, the influence of oblique wave attack has been evaluated. A new expression for oblique waves has been derived that can be applied for all tested structure types.
PDF (Inglés)

Referencias

Bruce, T., J.W. van der Meer, L. Franco and J.M. Pearson. 2009. Overtopping performance of different armour units for rubble mound breakwaters, Coastal Engineering, 56, 166–179; https://doi.org/10.1016/j.coastaleng.2008.03.015

Capel, A. 2015. Wave run-up and overtopping reduction by block revetments with enhanced roughness, Coastal Engineering, 104, 76–92; https://doi.org/10.1016/j.coastaleng.2015.06.007

Chen, W., M.R.A. van Gent, J.J. Warmink and S.J.M.H. Hulscher. 2020a. The influence of a berm and roughness on the wave overtopping at dikes, Coastal Engineering, 156; https://doi.org/10.1016/j.coastaleng.2019.103613

Chen, W., A. Marconi, M.R.A. van Gent, J.J. Warmink and S.J.M.H. Hulscher. 2020b. Experimental study on the influence of berms and roughness on wave overtopping at rock-armoured dikes, J. Mar. Sci. Eng. 2020; https://doi.org/10.3390/jmse8060446

Chen, W., J.J. Warmink, M.R.A. van Gent, and S.J.M.H. Hulscher. 2021. Numerical modelling of wave overtopping at dikes using OpenFOAM®, Elsevier, Coastal Engineering, https://doi.org/10.1016/j.coastaleng.2021.103890

Chen, W., J.J. Warmink, M.R.A. van Gent, and S.J.M.H. Hulscher. 2022. Numerical investigation of the effects of roughness, a berm and oblique waves on wave overtopping processes at dikes, Elsevier, Applied Ocean Research, 118, https://doi.org/10.1016/j.apor.2021.102971

Den Bieman, J.P., M.R.A. van Gent and H.F.P. van den Boogaard. 2021. Wave overtopping predictions using an advanced machine learning technique, Coastal Engineering; https://doi.org/10.1016/j.coastaleng.2020.103830

EA manual. 1999. Overtopping of seawalls – design and assessment manual, R & D Technical Report W 178, ISBN 1 85705 069 X, Environment Agency, Bristol.

Etemad-Shahidi, A., A. Koosheh, M.R.A. van Gent. 2022. On the mean overtopping rate of rubble mound structures, Coastal Engineering, https://doi.org/10.1016/j.coastaleng.2022.104150

Franco, C. and L. Franco. 1999. Overtopping formulas for caisson breakwaters with nonbreaking 3D waves, J. Waterw. Port, Coast. Ocean Engineering, 125, 98-108.

Gallach-Sánchez, D. 2018. Experimental study of wave overtopping performance of steep low-crested structures, Ph.D. Thesis, Universiteit Gent, Belgium.

Gallach-Sánchez, D., P. Troch and A. Kortenhaus. 2021. A new average wave overtopping prediction formula with improved accuracy for smooth steep low-crested structures, Coastal Engineering, 163; https://doi.org/10.1016/j.coastaleng.2020.103800

Irías Mata, M. and M.R.A. van Gent. 2023. Numerical modelling of wave overtopping discharges at rubble mound breakwaters using OpenFOAM®, Elsevier, Coastal Engineering; https://doi.org/10.1016/j.coastaleng.2022.104274

Koosheh, A., A. Etemad-Shahidi, N. Cartwright, R. Tomlinson and M.R.A. van Gent. 2021. Individual wave overtopping at coastal structures: A critical review and the existing challenges, Applied Ocean Research, 106; https://doi.org/10.1016/j.apor.2020.102476

Koosheh, A., A. Etemad-Shahidi, N. Cartwright, R. Tomlinson, M.R.A. van Gent. 2022a. Experimental study of wave overtopping at rubble mound seawalls, Elsevier, Coastal Engineering, 172, https://doi.org/10.1016/j.coastaleng.2021.104062

Koosheh, A., A. Etemad-Shahidi, N. Cartwright, R. Tomlinson, M.R.A. van Gent. 2022b. Distribution of individual wave overtopping volumes at rubble mound seawalls, Elsevier, Coastal Engineering, https://doi.org/10.1016/j.coastaleng.2022.104173

Martinelli, L., P. Ruol, M. Volpato, C. Favaretto, M. Castellino, P. de Girolamo, L. Franco, A. Romano and P. Sammarco. 2018. Experimental investigation on non-breaking wave forces and overtopping at the recurved parapets of vertical breakwaters, Coastal Engineering, 141, 52-67; https://doi.org/10.1016/j.coastaleng.2018.08.017

Molines, J. and J.R. Medina. 2015. Calibration of overtopping roughness factors for concrete armor units in non-breaking conditions using the CLASH database, Coastal Engineering, 96, 62-70; https://doi.org/10.1016/j.coastaleng.2014.11.008

Napp, N., T. Bruce, J. Pearson and W. Allsop. 2004. Violent overtopping of vertical seawalls under oblique wave conditions, Proc. ICCE 2004, Lisbon.

Schüttrumpf, H. 2001. Wave Overtopping Flow at Seadikes—Experimental and Theoretical Investigations, Ph.D. Thesis, Technische Universität Braunschweig, Braunschweig, Germany, 2001.

Schüttrumpf, H. and M.R.A. van Gent. 2003. Wave overtopping at seadikes. Proc. Coastal Structures Conference 2003, Portland, Oregon, 26–30.

TAW. 2002. Technical Report Wave Run-up and Wave Overtopping at Dikes, Technical Advisory Committee on Flood Defence (TAW), Delft.

Van Bergeijk, V., J.J. Warmink, M.R.A. van Gent, S.J.M.H. Hulscher. 2019. An analytical model of wave overtopping flow velocities on dike crests and landward slopes. Coastal Engineering, 149, 28-38; https://doi.org/10.1016/j.coastaleng.2019.03.001

Van der Werf, I.M. and M.R.A. van Gent. 2018. Wave overtopping over coastal structures with oblique wind and swell waves, J. Mar. Sci. Eng. 2018, 6 (4), 149; https://doi.org/10.3390/jmse6040149

Van Doorslaer, K. 2018. Reduction of wave overtopping by and wave-induced forces on storm walls and promenades at crest level of smooth dikes; an experimental study, Ph.D. Thesis, Universiteit Gent, Belgium.

Van Gent, M.R.A. 2002. Wave overtopping at dikes, World Scientific, Proc. ICCE 2002, 2, 2203-2215.

Van Gent, M.R.A., H.F.P. van den Boogaard, B. Pozueta and J.R. Medina. 2007. Neural network modelling of wave overtopping at coastal structures, Coastal Engineering, 54, 586–593; https://doi.org/10.1016/j.coastaleng.2006.12.001

Van Gent, M.R.A. and I.M. van der Werf. 2019. Influence of oblique wave attack on wave overtopping and wave forces on rubble mound breakwater crest walls, Coastal Engineering, 151, 78-96; https://doi.org/10.1016/j.coastaleng.2019.04.001

Van Gent, M.R.A. 2020. Influence of oblique wave attack on wave overtopping at smooth and rough dikes with a berm, Coastal Engineering, 160, https://doi.org/10.1016/j.coastaleng.2020.103734

Van Gent, M.R.A. 2021. Influence of oblique wave attack on wave overtopping at caisson breakwaters with sea and swell conditions, Elsevier, Coastal Engineering, 164; https://doi.org/10.1016/j.coastaleng.2020.103834

Van Gent, M.R.A., G. Wolters and A. Capel. 2022. Wave overtopping discharges at rubble mound breakwaters including effects of a crest wall and a berm, Elsevier, Coastal Engineering, 176; https://doi.org/10.1016/j.coastaleng.2022.104151

Wenneker, I., J. Meesters, R. Hoffmann and D. Francissen. 2010. Active wave absorption system ARCH, Proc. 3rd International Conference on the Application of Physical Modelling to Port and Coastal Protection, Barcelona, Spain.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Derechos de autor 2023 Marcel R.A. van Gent